Abstract
Via the accumulation of data from across the neuroanatomy literature, we estimate the manner in which (i) the number of neocortical areas varies with neocortex size, and (ii) the number of area-area connections varies with neocortex size. Concerning parcellation, we find that the number of areas scales approximately as the 1/3 power of gray matter volume, or, equivalently, as the square root of the total number of neocortical neurons. A consequence of this is that the average number of neurons per area also scales approximately as the square root of the total number of areas. Concerning area-area connectivity, we find evidence that the total number of area-area connections scales as the square of the number of areas. These scaling results help constrain theories about the principles underlying neocortical organization.