Evidence accumulated over the last few decades demonstrates that all reptiles examined thus far continue to add neurons at a high rate and in many regions of the adult brain. This so-called adult neurogenesis has been described in the olfactory bulbs, rostral forebrain, all cortical areas, anterior dorsal ventricular ridge, septum, striatum, nucleus sphericus, and cerebellum. The rate of neuronal production varies greatly among these brain areas. Moreover, striking differences in the rate and distribution of adult neurogenesis have been noted among species. In addition to producing new neurons in the adult brain, lizards, and possibly other reptiles as well, are capable of regenerating large portions of their telencephalon damaged as a result of experimentally-induced injuries, thus exhibiting an enormous potential for neuronal regeneration. Adult neurogenesis and neuronal regeneration take advantage of the same mechanisms that are present during embryonic neurogenesis. New neurons are born in the ependyma lining the ventricles and migrate radially through the brain parenchyma along processes of radial glial cells. Several lines of evidence suggest that radial glial cells also act as stem cells for adult neurogenesis. Once they reach their final destination, the young neurons extend axons that reach appropriate target areas. Tangential migration of neurons alongside the ventricular ependyma has also been reported. Most of these tangentially migrating neurons seem to be destined for the olfactory bulbs and are, thus, part of a system similar to the mammalian rostral migratory stream. The proliferation and recruitment of new neurons appear to result in continuous growth of most areas showing adult neurogenesis. The functional consequences of this continuous generation and integration of new neurons into existing circuits is largely conjectural, but involvement of these phenomena in learning and memory is one likely possibility.

1.
Alibardi, L. (1994) H3-thymidine labeled cerebrospinal fluid contacting cells in the regenerating causal spinal cord of the lizard Lampropholis. Ann. Anat., 176: 347–356.
2.
Altman, J. (1970) Postnatal neurogenesis and the problem of neural plasticity. In Developmental Neurobiology (ed. by W.A. Himwich), C.C Thomas, Springfield, IL, pp. 192–237.
3.
Alvarez-Buylla, A. (1990) Mechanism of neurogenesis in adult avian brain. Experientia, 46: 948–955.
4.
Alvarez-Buylla, A. (1992) Neurogenesis and plasticity in the CNS of adult birds. Exp. Neurol., 115: 110–114.
5.
Alvarez-Buylla, A., and C. Lois (1995) Neuronal stem cells in the brain of adult vertebrates. Stem Cells, 13: 263–272.
6.
Alvarez-Buylla, A., and F. Nottebohm (1988) Migration of young neurons in adult avian brain. Nature, 335: 353–354.
7.
Alvarez-Buylla, A., J.M. García-Verdugo, and A.D. Tramontin (2001) A unified hypothesis on the lineage of neural stem cells. Nat. Rev. Neurosci., 2: 287–293.
8.
Alvarez-Buylla, A., M. Theelen, and F. Nottebohm (1988) Mapping of radial glia and of a new cell type in adult canary brain. J. Neurosci., 8:2707–2712.
9.
Alvarez-Buylla, A., M. Theelen, and F. Nottebohm (1990a) Proliferation ‘hot spots’ in adult avian ventricular zone reveal radial cell division. Neuron, 5: 101–109.
10.
Alvarez-Buylla, A., J.R. Kirn, and F. Nottebohm (1990b) Birth of projection neurons in adult avian brain may be related to perceptual or motor learning. Science, 249: 1444–1446.
11.
Alvarez-Buylla, A., J.M. García-Verdugo, A.S. Mateo, and H. Merchant-Larios (1998) Primary neural precursors and intermitotic nuclear migration in the ventricular zone of adult canaries. J. Neurosci., 18: 1020–1037.
12.
Barnea, A., and F. Nottebohm (1994) Seasonal recruitment of hippocampal neurons in adult free-ranging black-capped chickadees. Proc. Natl. Acad. Sci. USA, 91: 11217–11221.
13.
Barnea, A., and F. Nottebohm (1996) Recruitment and replacement of hippocampal neurons in young and adult chickadees: an addition to the theory of hippocampal learning. Proc. Natl. Acad. Sci. USA, 93: 714–718.
14.
Barres, B.A. (1999) A new role for glia: generation of neurons! Cell, 97: 667–670.
15.
Bingman, V.P., T.J. Jones, R. Strasser, A. Gagliardo, and P. Ioalé (1995) Homing pigeons, hippocampus and spatial cognition. In Behavioural Brain Research in Naturalistic and Semi-Naturalistic Settings (ed. by E. Alleva, A. Fasolo, H.P. Lipp, L. Nadel and L. Ricceri), Kluwer, Dordrecht, pp. 207–223.
16.
Butler, A.B. (1994) The evolution of the dorsal pallium in the telencephalon of amniotes: cladistic analysis and a new hypothesis. Brain Res. Rev., 19: 66–101.
17.
Butler, A.B., and W. Hodos (1996) Comparative Vertebrate Neuroanatomy: Evolution and Adaptation. Wiley-Liss, New York.
18.
Chanas-Sacre, G., B. Rogister, G. Moonen, and P. Leprince (2000) Radial glia phenotype: origin, regulation, and transdifferentiation. J. Neurosci. Res., 61: 357–363.
19.
Chernoff, E.A.G. (1996) Spinal cord regeneration: a phenomenon unique to urodeles? Int. J. Dev. Biol., 40: 823–831.
20.
Chiasson, B.J., V. Tropepe, C.M. Morsehead, and D. van der Kooy (1999) Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. J. Neurosci., 19: 4462–4471.
21.
Clayton, N.S., and J.R. Krebs (1995) Memory in food-storing birds: from behaviour to brain. Curr. Opin. Neurobiol., 5: 149–154.
22.
Dahl, D., C.J. Crosby, A. Sethi, and A. Bignami (1985) Glial fibrillary acidic (GFA) protein in vertebrates: immunofluorescence and immunoblotting study with monoclonal and polyclonal antibodies. J. Comp. Neurol., 239: 75–88.
23.
Del Grande, P., V. Franceschini, G. Minelli, and F. Ciani (1990) Mitotic activity of the telencephalic matrix areas following optic tectum or pallial cortex lesion in newt. Z. mikrosk.-anat. Forsch., 104: 617–624.
24.
Desfilis, E., J.M. García-Verdugo, and E. Font (1993) Regeneration in the adult lizard brain: further evidence from 3HT autoradiography. Eur. J. Neurosci., S6: 290.
25.
Doetsch, F., and A. Alvarez-Buylla (1996) Network of tangential pathways for neuronal migration in adult mammalian brain. Proc. Natl. Acad. Sci. USA, 93: 14895–14900.
26.
Doetsch, F., I. Caillé, D.A. Lim, J.M. García-Verdugo, and A. Alvarez-Buylla (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 97: 703–716.
27.
Duffy, M.T., S.B. Simpson, D.R. Liebich, and B.M. Davis (1990) Origin of spinal cord axons in the lizard regenerated tail: supernormal projections from local spinal neurons. J. Comp. Neurol., 293: 208–222.
28.
Duvall, D., L.J. Guillette, and R.E. Jones (1982) Environmental control of reptilian reproductive cycles. In Biology of the Reptilia, Vol. 13 (ed. by C. Gans and H. Pough), Academic Press, New York, pp. 201–231.
29.
Eriksson, P.S., E. Perfilieva, T. Björk-Eriksson, A.M. Alborn, C. Nordborg, D.A. Peterson, and F.H. Gage (1998) Neurogenesis in the adult human hippocampus. Nat. Med., 4: 1313–1317.
30.
Fleischhauer, K. (1957) Untersuchungen am Ependym des Zwischen- und Mittelhirns der Landschildkröte (Testudo graeca). Z. Zellforsch., 46:729–765.
31.
Font, E., and E. Desfilis (1993) Brain mechanisms of spatial memory in lizards. Proceedings of the 23rd International Ethological Conference, Torremolinos, Spain, p. 299.
32.
Font, E., E. Desfilis, M. Pérez-Cañellas, S. Alcántara, and J.M. García-Verdugo (1997) 3-Acetylpyridine-induced degeneration and regeneration in the adult lizard brain: a qualitative and quantitative analysis. Brain Res., 754: 245–259.
33.
Font, E., J.M. García-Verdugo, S. Alcántara, and C. López-García (1991) Neuron regeneration reverses 3-acetylpyridine-induced cell loss in the cerebral cortex of adult lizards. Brain Res., 551: 230–235.
34.
Font, E., J.M. García-Verdugo, E. Desfilis, and M. Pérez-Cañellas (1995) Neuron-glia interrelations during 3-acetylpyridine-induced degeneration and regeneration in the adult lizard brain. In Neuron-Glia Interrelations during Phylogeny: II. Plasticity and Regeneration (ed. by A. Vernadakis and B. Roots), Humana, Totowa, NJ, pp. 275–302.
35.
García-Verdugo, J.M., P.J. Berbel, and C. López-García (1981) Estudio con Golgi y con microscopía electrónica de los ependimocitos de la corteza cerebral del lagarto Lacerta galloti. Trab. Inst. Cajal, 72: 269–278.
36.
García-Verdugo, J.M., E. Desfilis, E. Font, and A. Alvarez-Buylla (2000) Cell types responsible for adult neurogenesis in lizards. Proceedings of the Workshop on Genetic Factors that Control Cell Birth, Cell Allocation and Migration in the Developing Forebrain, Instituto Juan March, Madrid, Spain, p. 65.
37.
García-Verdugo, J.M., I. Farinas, A. Molowny, and C. López-García (1986) Ultrastructure of putative migrating cells in the cerebral cortex of Lacerta galloti. J. Morphol., 189: 189–197.
38.
García-Verdugo, J.M., S. Llahi, I. Ferrer, and C. López-García (1989) Postnatal neurogenesis in the olfactory bulbs of a lizard: a tritiated thymidine autoradiographic study. Neurosci. Lett., 98: 247–252.
39.
Gheusi, G., H. Cremer, H. McLean, G. Chazal, J.D. Vincent, and P.M. Lledo (2000) Importance of newly generated neurons in the adult olfactory bulb for odor discrimination. Proc. Natl. Acad. Sci. USA, 97: 1823–1828.
40.
Goffinet, A.M. (1983) The embryonic development of the cortical plate in reptiles: a comparative analysis in Emys orbicularis and Lacerta agilis. J. Comp. Neurol., 215: 437–452.
41.
Goffinet, A.M., C. Daumeric, B. Langerwerf, and C. Pieau (1986) Neurogenesis in reptilian cortical structures: 3H-thymidine autoradiographic analysis. J. Comp. Neurol., 243: 437–452.
42.
Goldman, S.A., and M.B. Luskin (1998) Strategies utilized by migrating neurons of the postnatal vertebrate forebrain. Trends Neurosci., 21: 107–114.
43.
Goss, R.J. (1992) The evolution of regeneration: adaptive or inherent? J. Theor. Biol., 159: 241–260.
44.
Gould, E., and P. Tanapat (1997) Lesion-induced proliferation of neuronal progenitors in the dentate gyrus of the adult rat. Neuroscience, 80: 427–436.
45.
Gould, E., A. Beylin, P. Tanapat, A. Reeves, and T.J. Shors (1999a) Learning enhances adult neurogenesis in the hippocampal formation. Nat. Neurosci., 2: 260–265.
46.
Gould, E., P. Tanapat, N.B. Hastings, and T.J. Shors (1999b) Neurogenesis in adulthood: a possible role in learning. Trends Cogn. Sci., 3:186–192.
47.
Greenberg, N., and P.D. MacLean (eds.) (1978) Behavior and Neurology of Lizards. National Institute of Mental Health, Rockville, Maryland.
48.
Gross, C.G. (2000) Neurogenesis in the adult brain: death of a dogma. Nat. Rev. Neurosci., 1: 67–73.
49.
Hastings, N.B., P. Tanapat, and E. Gould (2000) Comparative views of adult neurogenesis. The Neuroscientist, 6: 313–325.
50.
Hastings, N.B., P. Tanapat, and E. Gould (2001) Neurogenesis in the adult mammalian brain. Clin. Neurosci. Res., 1: 175–182.
51.
Healy, S.D., and J.R. Krebs (1996) Food storing and the hippocampus in Paridae. Brain Behav. Evol., 47: 195–199.
52.
Hetzel, W. (1974) Die Ontogenese des Telencephalons bei Lacerta sicula (Rafinesque) mit besonderer Berücksichtigung der pallialen Entwicklung. Zool. Garten, 20: 361–458.
53.
Hidalgo, A., K. Barami, K. Iversen, and S.A. Goldman (1995) Estrogens and non-estrogenic ovarian influences combine to promote the recruitment and decrease the turnover of new neurons in the adult female canary brain. J. Neurobiol., 27: 470–487.
54.
Holtzman, D.A. (1993) The ontogeny of nasal chemical senses in garter snakes. Brain Behav. Evol., 41: 163–170.
55.
Holtzman, D.A., and M. Halpern (1991) Incorporation of 3HT in telencephalic structures of the vomeronasal and olfactory systems of embryonic garter snakes. J. Comp. Neurol., 304: 450–466.
56.
Holtzman, D. A., T. W. Harris, G. Aranguren, and E. Bostock (1999) Spatial learning of an escape task by young corn snakes, Elaphe guttata guttata. Anim. Behav., 57: 51–60.
57.
Hulsebosch, C.E., and G.D. Bittner (1980) Evolution of abilities to regenerate neurons in central nervous systems. Am. Nat. , 115: 276–284.
58.
Johansson, C.B., S. Momma, D.L. Clarke, M. Risling, U. Lendahl, and J. Frisén (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell, 96: 25–34.
59.
Källen, B. (1951) Contributions to the knowledge of the medial wall of the reptilian forebrain. Acta Anat., 13: 90–100.
60.
Kálmán, M., A. Kiss A, and K. Majorossy (1994) Distribution of glial fibrillary acidic protein-immunopositive structures in the brain of the red-eared freshwater turtle (Pseudemys scripta elegans). Anat. Embryol., 189: 421–434.
61.
Kirn, J.R., and F. Nottebohm (1993) Direct evidence for loss and replacement of projection neurons in adult canary brain. J. Neurosci., 13: 1654–1663.
62.
Kirn, J.R., Y. Fishman, K. Sasportas, A. Alvarez-Buylla, and F. Nottebohm (1999) Fate of new neurons in adult canary high vocal center during the first 30 days after their formation. J. Comp. Neurol., 411: 487–494.
63.
Kirsche, W. (1967) Über postembryonale Matrixzonen im Gehirn verschiedener Vertebraten und deren Beziehung zur Hirnbauplanlehre. Z. mikrosk.-anat. Forsch., 77: 313–406.
64.
Kirsche, W. (1983) The significance of matrix zones for brain regeneration and brain transplantation with special consideration of lower vertebrates. In Neural Tissue Transplantation Research (ed. by R.B. Wallace and G.D. Das), Springer, Berlin, pp. 65–104.
65.
Kolb, B., and I.Q. Whishaw (1998) Brain plasticity and behavior. Ann. Rev. Psychol., 49: 43–64.
66.
Kornack, D.R., and P. Rakic (1999) Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc. Natl. Acad. Sci. USA, 96: 5768–5773.
67.
Kornack, D.R., and P. Rakic (2001) The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc. Natl. Acad. Sci. USA, 98: 4752–4757.
68.
Kriegstein, A.R., J.M. Shen, and N. Eshhar (1986) Monoclonal antibodies to the turtle cortex reveal neuronal subsets, antigenic cross-reactivity with the mammalian neocortex, and forebrain structures sharing a pallial derivation. J. Comp. Neurol., 254: 330–340.
69.
Laywell, E.D., P. Rakic, V.G. Kukekov, E.C. Holland, and D.A. Steindler (2000) Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc. Natl. Acad. Sci. USA, 97: 13883–13888.
70.
Licht, P., H.E. Hoyer, and P.G.W.J. van Oordt (1969) Influence of photoperiod and temperature on testicular recrudescence and body growth in the lizards, Lacerta sicula and Lacerta muralis. J. Zool., 157: 469–501.
71.
Lois, C., and A. Alvarez-Buylla (1994) Long-distance neuronal migration in the adult mammalian brain. Science, 264: 1145–1148.
72.
Lois, C., J.M. García-Verdugo, and A. Alvarez-Buylla (1996) Chain migration of neuronal precursors. Science, 271: 978–981.
73.
López-García, C. (1993) Postnatal neurogenesis and regeneration in the lizard cerebral cortex. In Restorative Neurology, Vol. 6: Neuronal Cell Death and Repair (ed. by A.C. Cuello), Elsevier, Amsterdam, pp. 237–246.
74.
López-García, C., A. Molowny, J.M. García-Verdugo, and I. Ferrer (1988a) Delayed postnatal neurogenesis in the cerebral cortex of lizards. Dev. Brain Res., 43: 167–174.
75.
López-García, C., A. Molowny, R. Rodriguez-Serna, J.M. García-Verdugo, and F.J. Martínez-Guijarro (1988b) Postnatal development of neurons in the telencephalic cortex of lizards. In The Forebrain of Reptiles: Current Concepts of Structure and Function (ed. by W.K. Schwerdtfeger and W.J.A.J. Smeets), Karger, Basel, pp.122–130.
76.
López-García, C., A. Molowny, J.M. García-Verdugo, F.J. Martínez-Guijarro, and A. Bernabeu (1990a) Late generated neurons in the medial cortex of adult lizards send axons that reach the Timm-reactive zones. Dev. Brain Res., 57: 249–254.
77.
López-García, C., A. Molowny, J.M. García-Verdugo, F. Pérez-Sánchez, and F.J. Martínez-Guijarro (1990b) Postnatal neurogenesis in the brain of the lizard Podarcis hispanica. In The Forebrain in Nonmammals: New Aspects of Structure and Development (ed. by W.K. Schwerdtfeger and P. Germroth), Springer-Verlag, Berlin, pp. 103–117.
78.
López-García, C., A. Molowny, F.J. Martínez-Guijarro, J.M. Blasco-Ibañez, J.A. Luis de la Iglesia, A. Bernabeu, and J.M. García-Verdugo (1992) Lesion and regeneration in the medial cerebral cortex of lizards. Histol. Histopathol., 7: 725–746.
79.
López-García, C., J. Nacher, B. Castellano, J.A. Luis de la Iglesia, and A. Molowny (1994) Transitory disappearance of microglia during the regeneration of the lizard medial cortex. Glia, 12: 52–61.
80.
López-García, C., P.L. Tineo, and J. del Corral (1984) Increase of the neuron number in some cerebral cortical areas of a lizard, Podarcis hispanica, (Steind., 1870), during postnatal periods of life. J. Hirnforsch., 25: 255–259.
81.
Luskin, M.B. (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain ventricular zone. Neuron, 11: 173–189.
82.
Margotta, V., and A. Morelli (1996) Encephalic matrix areas and post-natal neurogenesis under natural and experimental conditions. Anim. Biol., 5: 117–131.
83.
Margotta, V., and A. Morelli (1997) Contribution of radial glial cells to neurogenesis and plasticity of central nervous system in adult vertebrates. Anim. Biol., 6: 101–108.
84.
Margotta, V., A. Morelli, and L. Alfei (1999) PCNA positivity in the telencephalic matrix areas in the adult of a lizard, Podarcis sicula. J. Brain Res., 39: 271–276.
85.
Martínez-Guijarro, F.J., J.M. Blasco-Ibañez, and C. López-García (1994) Postnatal increase of GABA- and PV-IR cells in the cerebral cortex of the lizard Podarcis hispanica. Brain Res., 634: 168–172.
86.
Minelli, G., P. Del Grande, and M.C. Mambelli (1978) Preliminary study of the regenerative processes of the dorsal cortex of the telencephalon of Lacerta viridis. Z. mikrosk.-anat. Forsch., 91: 241–246.
87.
Minelli, G., V. Franceschini, P. Del Grande, and F. Ciani (1987) Newly-formed neurons in the regenerating optic tectum of Triturus cristatus carnifex. Bas. Appl. Histochem., 31: 43–52.
88.
Molowny, A., J. Nacher, and C. López-García (1995) Reactive neurogenesis during regeneration of the lesioned medial cerebral cortex of lizards. Neuroscience, 68: 823–836.
89.
Monzón-Mayor, M., C. Yanes, G. Tholey, J. de Barry, and G. Gombos (1990) Immunohistochemical localization of glutamine synthetase in mesencephalon and telencephalon of the lizard Gallotia galloti during ontogeny. Glia, 3:81–97.
90.
Moore, M.C., and J. Lindzey (1992) Physiological regulation of sexual behavior in male reptiles. In Biology of the Reptilia, Vol. 18 (ed. by C. Gans and D. Crews), University of Chicago Press, Chicago, IL, pp. 70–113.
91.
Morshead, C.M., and D. van der Kooy (2001) A new ‘spin’ on neural stem cells? Curr. Opin. Neurobiol., 11: 59–65.
92.
Nacher, J., C. Ramirez, A. Molowny, and C. López-García (1996) Ontogeny of somatostatin immunoreactive neurons in the medial cerebral cortex and other cortical areas of the lizard Podarcis hispanica. J. Comp. Neurol., 374:118–35.
93.
Nacher, J., C. Ramírez, J.J. Palop, P. Artal, A. Molowny, and C. López-García (1999a) Microglial cells during the lesion-regeneration of the lizard medial cortex. Histol. Histopathol., 14:103–117.
94.
Nacher, J., C. Ramírez, J.J. Palop, A. Molowny, J.A. Luis de la Iglesia, and C. López-García (1999b) Radial glia and cell debris removal during lesion-regeneration of the lizard medial cortex. Histol. Histopathol., 14: 89–101.
95.
Nadel, L. (1991) The hippocampus and space revisited. Hippocampus, 1: 221–229.
96.
Northcutt, R.G., and J.H. Kaas (1995) The emergenece and evolution of mammalian neocortex. Trends Neurosci., 18: 373–379.
97.
Nottebohm, F., and A. Alvarez-Buylla (1993) Neurogenesis and neuronal replacement in adult birds. In Restorative Neurology, Vol. 6: Neuronal Cell Death and Repair (ed. by A.C. Cuello), Elsevier, Amsterdam, pp. 227–236.
98.
Onteniente, B., H. Kimura, and T. Maeda (1983) Comparative study of the glial fibrillary acidic protein in vertebrates by PAP immunohistochemistry. J. Comp. Neurol., 215: 427–436.
99.
Ott, R., G.K.H. Zupanc, and I. Horschke (1997) Long-term survival of postembryonically born cells in the cerebellum of gymnotiform fish, Apteronotus leptorhynchus. Neurosci. Lett., 221: 185–188.
100.
Peñafiel, A., A. Gutiérrez, R. Martín, M.M. Pérez-Cañellas, and A. de la Calle (1996) A tangential neuronal migration in the olfactory bulbs of adult lizards. NeuroReport, 7: 1257–1260.
101.
Peretto, P., A. Merighi, A. Fasolo, and L. Bonfanti (1999) The subependymal layer in rodents: a site of structural plasticity and cell migration in the adult mammalian brain. Brain Res. Bull., 49: 221–243.
102.
Pérez-Cañellas, M.M., and J.M. García-Verdugo (1992) Adult neurogenesis in reptiles: a comparative study using [3H]thymidine autoradiography. Eur. J. Neurosci., S5: 294.
103.
Pérez-Cañellas, M.M., and J.M. García-Verdugo (1996) Adult neurogenesis in the telencephalon of a lizard: a [3H]thymidine autoradiographic and bromodeoxyuridine immunocytochemical study. Dev. Brain Res., 93: 49–61.
104.
Pérez-Cañellas, M.M., E. Font, and J.M. García-Verdugo (1997) Postnatal neurogenesis in the telencephalon of turtles: evidence for nonradial migration of new neurons from distant proliferative ventricular zones to the olfactory bulbs. Dev. Brain Res., 101: 125–137.
105.
Pérez-Sánchez, F., A. Molowny, J.M. García-Verdugo, and C. López-García (1989) Postnatal neurogenesis in the nucleus sphericus of the lizard, Podarcis hispanica. Neurosci. Lett., 106:71–75.
106.
Platel, R. (1974) Poids encéphalique et indice d’encéphalisation chez les reptiles sauriens. Zool. Anz., 192: 332–382.
107.
Rakic, P. (1990) Principles of neural cell migration. Experientia, 46: 882–891.
108.
Ramirez, C., J. Nacher, A. Molowny, F. Sánchez-Sánchez, A. Irurzun, and C. López-García (1997) Photoperiod-temperature and neuroblast proliferation-migration in the adult lizard cortex. NeuroReport, 8: 2337–2442.
109.
Rasika, S., F. Nottebohm, and A. Alvarez-Buylla (1994) Testosterone increases the recruitment and/or survival of new high vocal center neurons in adult female canaries. Proc. Natl. Acad. Sci. USA, 91: 7854–7858.
110.
Scharff, C., J.R. Kirn, M. Grossman, J.D. Macklis, and F. Nottebohm (2000) Targeted neuronal death affects neuronal replacement and vocal behavior in adult songbirds. Neuron, 25: 481–492.
111.
Schulz, R.L. (1969) Zur postnatalen Biomorphose des Ependyms im Telencephalon von Lacerta agilis agilis. Z. mikrosk.-anat. Forsch., 81: 111–152.
112.
Schwab, M.E., and M. Durand (1974) An autoradiographic study of neuroblast proliferation in the rhombencephalon of a reptile, Lacerta sicula. Z. Anat. Entwicklungsgesch., 145: 29–40.
113.
Schwerdtfeger, W.K., and W.J.A.J. Smeets (eds.) (1988) The Forebrain of Reptiles: Current Concepts of Structure and Function. Karger, Basel.
114.
Sherry, D., and S. Healy (1998) Neural mechanisms of spatial representation. In Spatial Representation in Animals (ed. by S. Healy), Oxford University Press, Oxford, UK, pp. 133–157.
115.
Shimizu, T. (2001) Evolution of the forebrain in tetrapods. In Brain Evolution and Cognition (ed. by G. Roth and M.F. Wullimann), Wiley, New York, pp. 135–184.
116.
Shors, T.J., G. Miesegaes, A. Beylin, M. Zhao, T. Rydel, and E. Gould (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature, 410: 372–376.
117.
Soutschek, J., and G.K.H. Zupanc (1995) Apoptosis as a regulator of cell proliferation in the central posterior/prepacemaker nucleus of adult gymnotiform fish, Apteronotus leptorhynchus. Neurosci. Lett., 202: 133–136.
118.
Soutschek, J., and G.K.H. Zupanc (1996) Apoptosis in the cerebellum of adult teleost fish, Apteronotus leptorhynchus. Dev. Brain Res., 97:279–286.
119.
Squire, L.R. (1993) The hippocampus and spatial memory. Trends Neurosci., 16: 56–57.
120.
Stensaas, L.J., and S. Stensaas (1968) Light microscopy of glial cells in turtles and birds. Z. Zellforsch., 91: 315–340.
121.
Striedter, G.F. (1997) The telencephalon of tetrapods in evolution. Brain Behav. Evol., 49: 179–213.
122.
Temple, S. (2001) Stem cell plasticity: building the brain of our dreams. Nat. Rev. Neurosci., 2:513–520.
123.
Temple, S., and A. Alvarez-Buylla (1999) Stem cells in the adult mammalian central nervous system. Curr. Opin. Neurobiol., 9: 135–141.
124.
Tineo, P.L., M.D. Planelles, and J. del Corral (1987) Modifications in cortical ependyma of the lizard, Podarcis hispanica, during postnatal development. J. Hirnforsch., 28: 485–489.
125.
Tramontin, A.D., and E.A. Brenowitz (2000) Seasonal plasticity in the adult brain. Trends Neurosci., 23: 251–258.
126.
Ulinski, P.S. (1990) The cerebral cortex of reptiles. In Cerebral Cortex, Vol. 8A: Comparative Structure and Evolution of Cerebral Cortex, Part I (ed. by E.G. Jones and A. Peters), Plenum, New York, pp 139–215.
127.
Voigt, T. (1989) Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J. Comp. Neurol., 289: 74–88.
128.
Whittier, J.M., and R.R. Tokarz (1992) Physiological regulation of sexual behavior in female reptiles. In Biology of the Reptilia, Vol. 18 (ed. by C. Gans and D. Crews), University of Chicago Press, Chicago, IL, pp. 24–69.
129.
Yanes, C., M. Monzón-Mayor, J. de Barry, and G. Gombos (1992) Myelin and myelinization in the telencephalon and mesencephalon of the lizard Gallotia galloti as revealed by the immunohistochemical localization of myelin basic protein. Anat. Embryol., 185: 475–487.
130.
Yanes, C., M. Monzón-Mayor, M.S. Ghandour, J. de Barry, and G. Gombos (1990) Radial glia and astrocytes in developing and adult telencephalon of the lizard Gallotia galloti as revealed by immunohistochemistry with anti-GFAP and anti-vimentin antibodies. J. Comp. Neurol., 295: 559–568.
131.
Yanes-Méndez, C., J.M. Martin-Trujillo, M.A. Pérez-Batista, M. Monzón-Mayor, and A. Marrero (1988a) Ependymogenesis of the lizard basal areas. II. Sulcus. Z. mikrosk.-anat. Forsch., 102: 573–589.
132.
Yanes-Méndez, C., J.M. Martin-Trujillo, M.A. Pérez-Batista, M. Monzón-Mayor, and A. Marrero (1988b) Ependymogenesis of the lizard basal areas. I. Ependymal zones. Z. mikrosk.-anat. Forsch., 102: 555–572.
133.
Zupanc, G.K.H. (1999) Neurogenesis, cell death and regeneration in the adult gymnotiform brain. J. Exp. Biol., 202: 1435–1446.
134.
Zupanc, G.K.H., and I. Horschke (1995) Proliferation zones in the brain of adult gymnotiform fish: a quantitative mapping study. J. Comp. Neurol., 353: 213–233.
135.
Zupanc, G.K.H., and R. Ott (1999) Cell proliferation after lesions in the cerebellum of adult teleost fish: time course, origin, and type of new cells produced. Exp. Neurol., 160: 78–87.
136.
Zupanc, G.K.H., I. Horschke, R. Ott, and G.B. Rascher (1996) Postembryonic development of the cerebellum in gymnotiform fish. J. Comp. Neurol., 370: 443–464.
137.
Zupanc, G.K.H., K.S. Kompass, I. Horschke, R. Ott, and H. Schwarz (1998) Apoptosis after injuries in the cerebellum of adult teleost fish. Exp. Neurol., 152: 221–230.
138.
Zuri, I., and C.M. Bull (2000) The use of visual cues for spatial orientation in the sleepy lizard. Can. J. Zool., 78: 515–520.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.