In contrast to mammals, teleost fish exhibit an enormous potential to produce new neurons in the adult central nervous system and to replace damaged neurons by newly generated ones. In the gymnotiform fish Apteronotus leptorhynchus, on average, 100,000 cells, corresponding to roughly 0.2% of the total population of cells in the adult brain, are in S-phase within any 2-h period. As in all other teleosts examined thus far, many of these cells are produced in specific proliferation zones located at or near the surface of ventricular, paraventricular, and cisternal systems, or in areas that are likely derived from proliferation zones located at ventricular surfaces during embryonic development. The majority of cells born in such proliferation zones migrate within the first few weeks following their generation to specific target areas. In the cerebellum, where approximately 75% of all brain cells are born during adulthood, cells originate from the molecular layers of the corpus cerebelli and the valvula cerebelli partes lateralis and medialis, as well as from the eminentia granularis pars medialis. From these proliferation zones, the young cells migrate to the associated granule cell layers or to the eminentia granularis pars posterior, respectively. In the course of their migration, the young cells appear to be guided by radial glial fibers. Upon arrival at their target region, approximately 50% of the young cerebellar cells undergo apoptosis. The remaining cells survive for the rest of the fish’s life, thus contributing to permanent brain growth. At least some cells differentiate into granule cell neurons. The potential to produce new neurons, together with the ability to guide the young cells to their target areas by radial glial fibers and to eliminate damaged cells through apoptosis, also forms the basis for the enormous regenerative capability of the central nervous system of Apteronotus, as demonstrated in the cerebellum and spinal cord. A factor involved in the cerebellar regeneration appears to be somatostatin, as the expression of this neuropeptide is up-regulated in a specific spatio-temporal fashion following mechanical lesions. Besides its involvement in neuronal regeneration adult neurogenesis in Apteronotus, and possibly teleost fish in general, appears to play a role in providing central neurons to match the growing number of sensory and motor elements in the periphery, and to establish the neural substrate to accommodate behavioral plasticity.

1.
Alonso, J.R., J. Lara, E. Vecino, R. Coveñas, and J. Aijón (1989) Cell proliferation in the olfactory bulb of adult freshwater teleosts. J. Anat., 163:155–163.
2.
Altman, J. (1962) Are new neurons formed in the brains of adult mammals? Science, 135: 1127–1128.
3.
Altman, J. (1963) Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat. Rec., 145: 573–591.
4.
Altman, J. (1969a) Autoradiographic and histological studies of postnatal neurogenesis: III. Dating the time of production and onset of differentiation of cerebellar microneurons in rats. J. Comp. Neurol., 136: 269–294.
5.
Altman, J. (1969b) Autoradiographic and histological studies of postnatal neurogenesis: IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J. Comp. Neurol., 137: 433–458.
6.
Altman, J., and G.D. Das (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol., 124: 319–336.
7.
Alvarez-Buylla, A., M. Theelen, and F. Nottebohm (1990) Proliferation ‘hotspots’ in adult avian ventricular zone reveal radial cell division. Neuron, 5: 101–109.
8.
Anderson, M.J., and S.G. Waxman (1981) Morphology of regenerated spinal cord in Sternarchus albifrons. Cell Tissue Res., 219: 1–8.
9.
Anderson, M.J., and S.G. Waxman (1983a) Regeneration of spinal neurons in inframammalian vertebrates: Morphological and developmental aspects. J. Hirnforsch., 24: 371–398.
10.
Anderson, M.J., and S.G. Waxman (1983b) Caudal spinal cord of the teleost Sternarchus albifrons resembles regenerating cord. Anat. Rec., 205:85–92.
11.
Anderson, M.J., and S.G. Waxman (1985) Neurogenesis in adult vertebrate spinal cord in situ and in vitro: A new model system. Ann. N.Y. Acad. Sci., 457: 213–233.
12.
Anderson, M.J., D.L. Rossetto, and L.A. Lorenz (1994) Neuronal differentiation in vitro from precursor cells of regenerating spinal cord of the adult teleost Apteronotus albifrons. Cell Tissue Res., 278: 243–248.
13.
Anderson, M.J., K.A. Swanson, S.G. Waxman, and L.F. Eng (1984a) Glial fibrillary acidic protein in regenerating teleost spinal cord. J. Histochem. Cytochem., 32: 1099–1106.
14.
Anderson, M.J., S.G. Waxman, and M. Laufer (1983) Fine structure of regenerated ependyma and spinal cord in Sternarchus albifrons. Anat. Rec., 205: 73–83.
15.
Anderson, M.J., S.G. Waxman, Y.-L. Lee, and L.F. Eng (1987) Molecular differentiation of neurons from ependyma-derived cells in tissue cultures of regenerating teleost spinal cord. Mol. Brain Res., 2: 131–136.
16.
Anderson, M.J., S.G. Waxman, and C.H. Tadlock (1984b) Cell death of asynaptic neurons in regenerating spinal cord. Dev. Biol., 103: 443–455.
17.
Bayer, S.A., J.W. Yackel, and P.S. Puri (1982) Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life. Science, 216: 890–892.
18.
Bennett, M.V.L. (1971) Electric organs. In Fish Physiology. Vol. 5: Sensory Systems and Electric Organs (ed. by W.S. Hoar, and D.J. Randall), Academic Press, New York/London, pp. 347–491.
19.
Bernstein, J.J. (1968) Regeneration of a peripheral nerve implant into goldfish telencephalic parenchyma. Nature, 217: 183–184.
20.
Book, K.J., and D.K. Morest (1990) Migration of neuroblasts by perikaryal translocation: Role of cellular elongation and axonal outgrowth in the acoustic nuclei of the chick embryo medulla. J. Comp. Neurol., 297: 55–76.
21.
Botsch, D. (1960) Dressur- und Transpositionsversuche bei Karauschen (Carassius, Teleostei) nach partieller Exstirpation des Tectum opticum. Z. Vergl. Physiol., 43: 173–230.
22.
Bufalari, A., A. Sidoni, M. Ferri, G. Lolli, and P. Alberti (1996) Effect of octreotide on pancreatic regeneration in rats measured by bromodeoxyuridine uptake. Eur. J. Surg., 162: 223–228.
23.
Bullock, T.H., and W. Heiligenberg (eds.) (1986) Electroreception. John Wiley and Sons, New York.
24.
Byrd, C.A., and P.C. Brunjes (2001) Neurogenesis in the olfactory bulb of adult zebrafish. Neuroscience, 105: 793–801.
25.
Clint, S.C., and G.K.H. Zupanc (2001) Neuronal regeneration in the cerebellum of adult teleost fish, Apteronotus leptorhynchus: Guidance of migrating young cells by radial glia. Dev. Brain Res., 130: 15–23.
26.
Clint, S.C., and G.K.H. Zupanc (2002) Up-regulation of vimentin expression during regeneration in the adult fish brain. NeuroReport, 13: 317–320.
27.
Corotto, F.S., J.A. Henegar, and J.A. Maruniak (1993) Neurogenesis persists in the subependymal layer of the adult mouse brain. Neurosci. Lett., 149: 111–114.
28.
Corwin, J.T. (1981) Postembryonic production and aging of inner ear hair cells in sharks. J. Comp. Neurol., 201: 541–553.
29.
Del Bigio, M.R. (1995) The ependyma: A protective barrier between brain and cerebrospinal fluid. Glia, 14: 1–13.
30.
Doetsch, F., and C. Scharff (2001) Challenges for brain repair: Insights from adult neurogenesis in birds and mammals. Brain Behav. Evol., 58: 306–322.
31.
Doetsch, F., I. Caillé, D.A. Lim, J.M. García-Verdugo, and A. Alvarez-Buylla (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 97: 703–716.
32.
Ekström, P., C.-M. Johnsson, and L.-M. Ohlin (2001) Ventricular proliferation zones in the brain of an adult teleost fish and their relation to neuromeres and migration (secondary matrix) zones. J. Comp. Neurol., 436: 92–110.
33.
Engler, G., C.M. Fogarty, J.R. Banks, and G.K.H. Zupanc (2000) Spontaneous modulations of the electric organ discharge in the weakly electric fish, Apteronotus leptorhynchus: A biophysical and behavioral analysis. J. Comp. Physiol. A, 186: 645–660.
34.
Eriksson, P.S., E. Perfilieva, T. Björk-Eriksson, A.M. Alborn, C. Nordborg, D.A. Peterson, and F.H. Gage (1998) Neurogenesis in the adult human hippocampus. Nat. Med., 4: 1313–1317.
35.
Finger, T.E. (1983) Organization of the teleost cerebellum. In Fish Neurobiology. Vol. 1: Brain Stem and Sense Organs (ed. by R.G. Northcutt, and R.E. Davis), The University of Michigan Press, Ann Arbor, MI, pp. 261–284.
36.
Font, E., E. Desfilis, M.M. Pérez-Cañellas, and J.M. García-Verdugo (2001) Neurogenesis and neuronal regeneration in the adult reptilian brain. Brain Behav. Evol., 58: 276–295.
37.
Gavrieli, Y., Y. Sherman, and S.A. Ben-Sasson (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol., 119: 493–501.
38.
Gheteu, A., and G.K.H. Zupanc (2001) The role of radial glia in guidance of migrating new cells in the adult cerebellum of teleost fish, Apteronotus leptorhynchus. In Göttingen Neurobiology Report, Proceedings of the 4th Meeting of the German Neuroscience Society 2001, Vol. 2, Georg Thieme Verlag, Stuttgart/New York, p. 973.
39.
Goldman-Rakic, P.S. (1980) Morphological consequences of prenatal injury to the primate brain. Prog. Brain. Res., 53: 3–19.
40.
Gonzalez, B.J., P. Leroux, C. Bodenant, A. Laquerrière, D.H. Coy, and H. Vaudry (1989) Ontogeny of somatostatin receptors in the rat brain: Biochemical and autoradiographic study. Neuroscience 29: 629–644.
41.
Gonzalez, B.J., P. Leroux, A. Laquerrière, D.H. Coy, C. Bodenant, and H. Vaudry (1988) Transient expression of somatostatin receptors in the rat cerebellum during development. Dev. Brain Res., 40: 154–157.
42.
Gould, E., B.S. McEwen, P. Tanapat, L.A.M. Galea, and E. Fuchs (1997) Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J. Neurosci., 17: 2492–2498.
43.
Gould, E., P. Tanapat, B.S. McEwen, G. Flügge, and E. Fuchs (1998) Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc. Natl. Acad. Sci. USA, 95: 3168–3171.
44.
Hartfuss, E., R. Galli, N. Heins, and M. Götz (2001) Characterization of CNS precursor subtypes and radial glia. Dev. Biol., 229: 15–30.
45.
Heiligenberg, W., T. Finger, J. Matsubara, and C. Carr (1981) Input to the medullary pacemaker nucleus in the weakly electric fish, Eigenmannia (Sternopygidae, Gymnotiformes). Brain Res., 211: 418–423.
46.
Johansson, C.B., S. Momma, D.L. Clarke, M. Risling, U. Lendahl, and J. Frisén (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell, 96: 25–34.
47.
Johns, P.R. (1977) Growth of the adult goldfish eye. III. Source of the new retinal cells. J. Comp. Neurol., 176: 343–358.
48.
Johns, P.R., and S.S.J. Easter (1977) Growth of the adult goldfish eye: II. Increase in retinal cell number. J. Comp. Neurol., 176: 331–342.
49.
Kaplan, M.S. (1981) Neurogenesis in the 3-month-old rat visual cortex. J. Comp. Neurol., 195:323–338.
50.
Kaplan, M.S., and D.H. Bell (1983) Neuronal proliferation in the 9-month-old rodent: Radioautographic study of granule cells in the hippocampus. Exp. Brain Res., 52: 1–5.
51.
Kaplan, M.S., and J.W. Hinds (1977) Neurogenesis in the adult rat: Electron microscopic analysis of light radioautographs. Science, 197: 1092–1094.
52.
Kawasaki, M., L. Maler, G.J. Rose, and W. Heiligenberg (1988) Anatomical and functional organization of the prepacemaker nucleus in gymnotiform electric fish: The accommodation of two behaviors in one nucleus. J. Comp. Neurol., 276: 113–131.
53.
Kerr, J.F.R., G.C. Gobé, C.M. Winterford, and B.V. Harmon (1995) Anatomical methods in cell death. In Cell Death (ed. by L.M. Schwartz, and B.A. Osborne), Academic Press, San Diego, CA, pp. 1–27.
54.
Kerr, J.F.R., J. Searle, B.V. Harmon, and C.J. Bishop (1987) Apoptosis. In Perspectives on Mammalian Cell Death (ed. by C.S. Potten), Oxford University Press, Oxford, UK, pp. 93–128.
55.
Kirsche, W. (1950) Die regenerativen Vorgänge am Rückenmark erwachsener Teleostier nach operativer Kontinuitätstrennung. Z. mikrosk.-anat. Forsch., 56: 190–265.
56.
Kirsche, W. (1967) Über postembryonale Matrixzonen im Gehirn verschiedener Vertebraten und deren Beziehung zur Hirnbauplanlehre. Z. mikrosk.-anat. Forsch., 77: 313–406.
57.
Kirsche, W., and K. Kirsche (1961) Experimentelle Untersuchungen zur Frage der Regeneration und Funktion des Tectum opticum von Carassius carassius L. Z. mikrosk.-anat. Forsch., 67:140–182.
58.
Kokudo, N., P.C. Kothary, F.E. Eckhauser, T. Nakamura, and S.E. Raper (1992) Inhibition of DNA synthesis by somatostatin in rat hepatocytes stimulated by hepatocyte growth factor or epidermal growth factor. Am. J. Surg., 163:169–173.
59.
Komuro, H., and P. Rakic (1992) Selective role of N-type calcium channels in neuronal migration. Science, 257: 806–809.
60.
Kotecha, S.A., D.W. Eley, and R.W. Turner (1997) Tissue printed cells from teleost electrosensory and cerebellar structures. J. Comp. Neurol., 386: 277–292.
61.
Koumans, J.T.M., and H.A. Akster (1995) Myogenic cells in development and growth of fish. Comp. Biochem. Physiol., 110A: 3–20.
62.
Kranz, D., and W. Richter (1970a) Autoradiographische Untersuchungen über die Lokalisation der Matrixzonen des Diencephalons von juvenilen und adulten Lebistes reticulatus (Teleostei). Z. mikrosk.-anat. Forsch., 82: 42–66.
63.
Kranz, D., and W. Richter (1970b) Autoradiographische Untersuchungen zur DNS-Synthese im Cerebellum und in der Medulla oblongata von Teleostiern verschiedenen Lebensalters. Z. mikrosk.-anat. Forsch., 82: 264–292.
64.
Lannoo, M.J., H.A. Vischer, and L. Maler (1990) Development of the electrosensory nervous system of Eigenmannia (Gymnotiformes): II. The electrosensory lateral line lobe, midbrain, and cerebellum. J. Comp. Neurol., 294: 37–58.
65.
Lois, C., and A. Alvarez-Buylla (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc. Natl. Acad. Sci. USA, 90: 2074–2077.
66.
Lois, C., and A. Alvarez-Buylla (1994) Long-distance neuronal migration in the adult mammalian brain. Science, 264: 1145–1148.
67.
Malatesta, P., E. Hartfuss, and M. Götz (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development, 127: 5253–5263.
68.
Maler, L., E. Sas, S. Johnston, and W. Ellis (1991) An atlas of the brain of the electric fish Apteronotus leptorhynchus. J. Chem. Neuroanat., 4: 1–38.
69.
Marcus, R.C., C.L. Delaney, and S.S. Easter (1999) Neurogenesis in the visual system of embryonic and adult zebrafish (Danio rerio). Vis. Neurosci., 16: 417–424.
70.
Mareš, V., and Z. Lodin (1974) An autoradiographic study of DNA synthesis in adolescent and adult mouse forebrain. Brain Res., 76: 557–561.
71.
Mascardo, R.N., and P. Sherline (1982) Somatostatin inhibits rapid centrosomal separation and cell proliferation induced by epidermal growth factor. Endocrinology, 111: 1394–1396.
72.
Metzner, W. (1999) Neural circuitry for communication and jamming avoidance in gymnotiform electric fish. J. Exp. Biol., 202: 1365–1375.
73.
Meyer, R.L. (1978) Evidence from thymidine labelling for continuing growth of retina and tectum in juvenile goldfish. Exp. Neurol., 59: 99–111.
74.
Meyer, R.L., K. Sakurai, and E. Schauwecker (1985) Topography of regenerating optic fibers in goldfish traced with local wheat germ injections into retina: Evidence for discontinuous microtopography in the retinotectal projection. J. Comp. Neurol., 239: 27–43.
75.
Miyata, T., A. Kawaguchi, H. Okano, and M. Ogawa (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron, 31:727–741.
76.
Modak, S.P., and F.J. Bollum (1972) Detection and measurement of single-strand breaks in nuclear DNA in fixed lens sections. Exp. Cell Res., 75:307–313.
77.
Morshead, C.M., B.A. Reynolds, C.G. Craig, M.W. McBurney, W.A. Staines, D. Morassutti, S. Weiss, and D. van der Kooy (1994) Neural stem cells in the adult mammalian forebrain: A relatively quiescent subpopulation of subependymal cells. Neuron, 13: 1071–1082.
78.
Nadarajah, B., J.E. Brunstrom, J. Grutzendler, R.O.L. Wong, and A.L. Pearlman (2001) Two modes of radial migration in early development of the cerebral cortex. Nat. Neurosci., 4:143–150.
79.
Noctor, S.C., A.C. Flint, T.A. Weissman, R.S. Dammerman, and A.R. Kriegstein (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature, 409: 714–720.
80.
Ott, R., G.K.H. Zupanc, and I. Horschke (1997) Long-term survival of postembryonically born cells in the cerebellum of gymnotiform fish, Apteronotus leptorhynchus. Neurosci. Lett., 221: 185–188.
81.
Pflugfelder, O. (1965) Reparative und regenerative Prozesse nach partieller Zerstörung von Fischgehirnen. Zool. Jb. Physiol., 71: 301–314.
82.
Pollak, M.N., and A.V. Schally (1998) Mechanisms of antineoplastic action of somatostatin analogs. Proc. Soc. Exp. Biol. Med., 217: 143–152.
83.
Pouwels, E. (1978a) On the development of the cerebellum of the trout, Salmo gairdneri: I. Patterns of cell migration. Anat. Embryol., 152:291–308.
84.
Pouwels, E. (1978b) On the development of the cerebellum of the trout, Salmo gairdneri: III. Development of neuronal elements. Anat. Embryol., 153: 37–54.
85.
Raff, M.C. (1992) Social controls on cell survival and cell death. Nature, 356: 397–400.
86.
Raff, M.C., B.A. Barres, J.F. Burne, H.S. Coles, Y. Ishizaki, and M.D. Jacobson (1993) Programmed cell death and the control of cell survival: Lessons from the nervous system. Science, 262:695–700.
87.
Rahmann, H. (1968) Autoradiographische Untersuchungen zum DNS-Stoffwechsel (Mitose-Häufigkeit) im ZNS von Brachydanio rerio HAM. BUCH. (Cyprinidae, Pisces). J. Hirnforsch., 10: 279–284.
88.
Rakic, P. (1985) Limits of neurogenesis in primates. Science, 227: 1054–1056.
89.
Raymond, P.A., and S.S. Easter (1983) Postembryonic growth of the optic tectum in goldfish. I. Location of germinal cells and numbers of neurons produced. J. Neurosci., 3: 1077–1091.
90.
Raymond, P.A., S.S. Easter, J.A. Burnham, and M.K. Powers (1983) Postembryonic growth of the optic tectum in goldfish. II. Modulation of cell proliferation by retinal fiber input. J. Neurosci., 3: 1092–1099.
91.
Reh, T.A., and A.J. Fischer (2001) Stem cells in the vertebrate retina. Brain Behav. Evol., 58: 296–305.
92.
Reier, P.J., L.J. Stensaas, and L. Guth (1983) The astrocytic scar as an impediment to regeneration in the central nervous system. In Spinal Cord Reconstruction (ed. by C.C. Kao, R.P. Bunge and P.J. Reier), Raven Press, New York, pp. 163–195.
93.
Richter, W., and D. Kranz (1970a) Autoradiographische Untersuchungen über die Abhängigkeit des 3H-Thymidin-Index vom Lebensalter in den Matrixzonen des Telencephalons von Lebistes reticulatus (Teleostei). Z. mikrosk.-anat. Forsch., 81: 530–554.
94.
Richter, W., and D. Kranz (1970b) Die Abhängigkeit der DNS-Synthese in den Matrixzonen des Mesencephalons vom Lebensalter der Versuchstiere (Lebistes reticulatus – Teleostei): Autoradiographische Untersuchungen. Z. mikrosk.-anat. Forsch., 82: 76–92.
95.
Rowe, R.W.D., and G. Goldspink (1969) Muscle fibre growth in five different muscles in both sexes of mice. J. Anat., 104: 519–530.
96.
Ruben, R.J. (1967) Development of the inner ear of the mouse: A radioautographic study of terminal mitoses. Acta Oto-Laryngol. Suppl., 220: 1–44.
97.
Sas, E., and L. Maler (1991) Somatostatin-like immunoreactivity in the brain of an electric fish (Apteronotus leptorhynchus) identified with monoclonal antibodies. J. Chem. Neuroanat., 4: 155–186.
98.
Schwartz, J.P., T. Taniwaki, A. Messing, and M. Brenner (1996) Somatostatin as a trophic factor: Analysis of transgenic mice overexpressing somatostatin in astrocytes. Ann. N.Y. Acad. Sci., 780: 29–35.
99.
Siehler, S., G.K.H. Zupanc, K. Seuwen, and D. Hoyer (1999) Characterisation of the fish sst3 receptor, a member of the SRIF1 receptor family: Atypical pharmacological features. Neuropharmacology, 38: 449–462.
100.
Soutschek, J., and G.K.H. Zupanc (1995) Apoptosis as a regulator of cell proliferation in the central posterior/prepacemaker nucleus of adult gymnotiform fish, Apteronotus leptorhynchus. Neurosci. Lett., 202: 133–136.
101.
Soutschek, J., and G.K.H. Zupanc (1996) Apoptosis in the cerebellum of adult teleost fish, Apteronotus leptorhynchus. Dev. Brain Res., 97:279–286.
102.
Srikant, C.B. (1995) Cell cycle dependent induction of apoptosis by somatostatin analog SMS 201-995 in AtT-20 mouse pituitary cells. Biochem. Biophys. Res. Commun., 209: 400–406.
103.
Stevenson, J.A., and M.G. Yoon (1978) Regeneration of optic nerve fibers enhances cell proliferation in the goldfish optic tectum. Brain Res., 153: 345–351.
104.
Stroh, T., and G.K.H. Zupanc (1993) Identification and localization of somatostatin-like immunoreactivity in the cerebellum of gymnotiform fish, Apteronotus leptorhynchus. Neurosci. Lett., 160: 145–148.
105.
Stroh, T., and G.K.H. Zupanc (1995) Somatostatin in the prepacemaker nucleus of weakly electric fish, Apteronotus leptorhynchus: Evidence for a nonsynaptic function. Brain Res., 674: 1–14.
106.
Stroh, T., and G.K.H. Zupanc (1996) The postembryonic development of somatostatin immunoreactivity in the central posterior/prepacemaker nucleus of weakly electric fish, Apteronotus leptorhynchus: A double-labelling study. Dev. Brain Res., 93: 76–87.
107.
Stuermer, C.A.O., M. Bastmeyer, M. Bähr, G. Strobel, and K. Paschke (1992) Trying to understand axonal regeneration in the CNS of fish. J. Neurobiol., 23: 537–550.
108.
Surh, C.D., and J. Sprent (1994) T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature, 372: 100–103.
109.
Szende, B., A. Zalatnai, and A.V. Schally (1989) Programmed cell death (apoptosis) in pancreatic cancers of hamsters after treatment with analogs of both luteinizing hormone-releasing hormone and somatostatin. Proc. Natl. Acad. Sci. USA, 86: 1643–1647.
110.
Taniwaki, T., and J.P. Schwartz (1995) Somatostatin enhances neurofilament expression and neurite outgrowth in cultured rat cerebellar granule cells. Dev. Brain Res., 88: 109–116.
111.
Tharani, Y., G.A. Thurlow, and R.W. Turner (1996) Distribution of ω-conotoxin GVIA binding sites in teleost cerebellar and electrosensory neurons. J. Comp. Neurol., 364: 456–472.
112.
Thompson, J.S., B.-L.T. Nguyen, and R.F. Harty (1993) Somatostatin analogue inhibits intestinal regeneration. Arch. Surg., 128: 385–389.
113.
Turner, R.W., and L.L. Moroz (1995) Localization of nicotinamide adenine dinucleotide phosphate-diaphorase in electrosensory and electromotor systems of a gymnotiform teleost, Apteronotus leptorhynchus. J. Comp. Neurol., 356:261–274.
114.
Voigt, T. (1989) Development of glial cells in the cerebral wall of ferrets: Direct tracing of their transformation from radial glia into astrocytes. J. Comp. Neurol., 289: 74–88.
115.
Waxman, S.G., and M.J. Anderson (1980) Regeneration of spinal electrocyte fibers in Sternarchus albifrons: Development of axon-Schwann cell relationships and nodes of Ranvier. Cell Tissue Res., 208: 343–352.
116.
Waxman, S.G., and M.J. Anderson (1986) Regeneration of central nervous structures: Apteronotus spinal cord as a model system. In Electroreception (ed. by T.H. Bullock and W. Heiligenberg), John Wiley and Sons, New York, pp. 183–208.
117.
Waxman, S.G., G.D. Pappas, and M.V.L. Bennett (1972) Morphological correlates of functional differentiation of nodes of Ranvier along single fibers in the neurogenic electric organ of the knife fish Sternarchus. J. Cell Biol., 53: 210–224.
118.
Zakon, H.H. (1984) Postembryonic changes in the peripheral electrosensory system of a weakly electric fish: Addition of receptor organs with age. J. Comp. Neurol., 228: 557–570.
119.
Zhang, Z., C.J. Krebs, and L. Guth (1997) Experimental analysis of progressive necrosis after spinal cord trauma in the rat: Etiological role of the inflammatory response. Exp. Neurol., 143:141–152.
120.
Zieleniewski, W., and J. Zieleniewski (1993) Somatostatin inhibits cell proliferation and corticosterone secretion in the early stage of adrenal regeneration. Cytobios., 74: 163–166.
121.
Zikopoulos, B., M. Kentouri, and C.R. Dermon (2000) Proliferation zones in the adult brain of a sequential hermaphrodite teleost species (Sparus aurata). Brain Behav. Evol. 56: 310–322.
122.
Zikopoulos, B., M. Kentouri, and C.R. Dermon (2001) Cell genesis in the hypothalamus is associated to the sexual phase of a hermaphrodite teleost. NeuroReport 12: 2477–2481.
123.
Zupanc, G.K.H. (1991) The synaptic organization of the prepacemaker nucleus in weakly electric knifefish, Eigenmannia: A quantitative ultrastructural study. J. Neurocytol., 20: 818–833.
124.
Zupanc, G.K.H. (1996) Peptidergic transmission: From morphological correlates to functional implications. Micron, 27: 35–91.
125.
Zupanc, G.K.H. (1998) An in vitro technique for tracing neuronal connections in the teleost brain. Brain Res. Protocols, 3: 37–51.
126.
Zupanc, G.K.H. (1999a) Up-regulation of somatostatin after lesions in the cerebellum of the teleost fish Apteronotus leptorhynchus. Neurosci. Lett., 268: 135–138.
127.
Zupanc, G.K.H. (1999b) Neurogenesis, cell death and regeneration in the adult gymnotiform brain. J. Exp. Biol., 202: 1435–1446.
128.
Zupanc, G.K.H. (2001) Distribution of radial glia in the central posterior/prepacemaker nucleus of weakly electric fish, Apteronotus leptorhynchus. In Göttingen Neurobiology Report, Proceedings of the 4th Meeting of the German Neuroscience Society 2001, Vol. 2, Georg Thieme Verlag, Stuttgart/New York, p. 976.
129.
Zupanc, G.K.H. (in press) From oscillators to modulators: Behavioral and neural control of modulations of the electric organ discharge in the gymnotiform fish, Apteronotus leptorhynchus. J. Physiol. (Paris).
130.
Zupanc, G.K.H., and S.C. Clint (2001) Radial glia-mediated up-regulation of somatostatin in the regenerating adult fish brain. Neurosci. Lett., 309: 149–152.
131.
Zupanc, G.K.H., and W. Heiligenberg (1992) The structure of the diencephalic prepacemaker nucleus revisited: Light microscopic and ultrastructural studies. J. Comp. Neurol., 323: 558–569.
132.
Zupanc, G.K.H., and I. Horschke (1995) Proliferation zones in the brain of adult gymnotiform fish: A quantitative mapping study. J. Comp. Neurol., 353: 213–233.
133.
Zupanc, G.K.H., and J. Lamprecht (2000) Towards a cellular understanding of motivation: Structural reorganization and biochemical switching as key mechanisms of behavioral plasticity. Ethology, 106: 467–477.
134.
Zupanc, G.K.H., and L. Maler (1997) Neuronal control of behavioral plasticity: The prepacemaker nucleus of weakly electric gymnotiform fish. J. Comp. Physiol. A, 180: 99–111.
135.
Zupanc, G.K.H., and R. Ott (1999) Cell proliferation after lesions in the cerebellum of adult teleost fish: Time course, origin, and type of new cells produced. Exp. Neurol., 160: 78–87.
136.
Zupanc, G.K.H., and M.M. Zupanc (1992) Birth and migration of neurons in the central posterior/prepacemaker nucleus during adulthood in weakly electric knifefish (Eigenmannia sp.). Proc. Natl. Acad. Sci. USA, 89: 9539–9543.
137.
Zupanc, G.K.H., D. Cécyre, L. Maler, M.M. Zupanc, and R. Quirion (1994) The distribution of somatostatin binding sites in the brain of gymnotiform fish, Apteronotus leptorhynchus. J. Chem. Neuroanat., 7: 49–63.
138.
Zupanc, G.K.H., I. Horschke, R. Ott, and G.B. Rascher (1996) Postembryonic development of the cerebellum in gymnotiform fish. J. Comp. Neurol., 370: 443–464.
139.
Zupanc, G.K.H., I. Horschke, and T. Stroh (1997) Expression of somatostatin in neurons of the central posterior/prepacemaker nucleus projecting to the preglomerular nucleus: Immunohistochemical evidence for a non-synaptic function. Neurosci. Lett., 224: 123–126.
140.
Zupanc, G.K.H., K.S. Kompass, I. Horschke, R. Ott, and H. Schwarz (1998) Apoptosis after injuries in the cerebellum of adult teleost fish. Exp. Neurol., 152: 221–230.
141.
Zupanc, G.K.H., L. Maler, and W. Heiligenberg (1991a) Somatostatin-like immunoreactivity in the region of the prepacemaker nucleus in weakly electric knifefish, Eigenmannia: A quantitative analysis. Brain Res., 559: 249–260.
142.
Zupanc, G.K.H., Y. Okawara, M.M. Zupanc, J.N. Fryer, and L. Maler (1991b) In situ hybridization of putative somatostatin mRNA in the brain of electric gymnotiform fish. NeuroReport, 2: 707–710.
143.
Zupanc, G.K.H., S. Siehler, E.M.C. Jones, K. Seuwen, H. Furuta, D. Hoyer, and H. Yano (1999) Molecular cloning and pharmacological characterization of a somatostatin receptor sybtype in the gymnotiform fish Apteronotus albifrons. Gen. Comp. Endocrinol., 15: 333–345.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.