The deep-sea pearleye, Scopelarchus michaelsarsi (Scopelarchidae) is a mesopelagic teleost with asymmetric or tubular eyes. The main retina subtends a large dorsal binocular field, while the accessory retina subtends a restricted monocular field of lateral visual space. Ocular specializations to increase the lateral visual field include an oblique pupil and a corneal lens pad. A detailed morphological and topographic study of the photoreceptors and retinal ganglion cells reveals seven specializations: a centronasal region of the main retina with ungrouped rod-like photoreceptors overlying a retinal tapetum; a region of high ganglion cell density (area centralis of 56.1×103 cells per mm2) in the centrolateral region of the main retina; a centrotemporal region of the main retina with grouped rod-like photoreceptors; a region (area giganto cellularis) of large (32.2±5.6 μm2), alpha-like ganglion cells arranged in a regular array (nearest neighbour distance 53.5±9.3 μm with a conformity ratio of 5.8) in the temporal main retina; an accessory retina with grouped rod-like photoreceptors; a nasotemporal band of a mixture of rod- and cone-like photoreceptors restricted to the ventral accessory retina; and a retinal diverticulum comprised of a ventral region of differentiated accessory retina located medial to the optic nerve head. Retrograde labelling from the optic nerve with DiI shows that approximately 14% of the cells in the ganglion cell layer of the main retina are displaced amacrine cells at 1.5 mm eccentricity. Cryosectioning of the tubular eye confirms Matthiessen’s ratio (2.59), and calculations of the spatial resolving power suggests that the function of the area centralis (7.4 cycles per degree/8.1 minutes of arc) and the cohort of temporal alpha-like ganglion cells (0.85 cycles per degree/70.6 minutes of arc) in the main retina may be different. Low summation ratios in these various retinal zones suggests that each zone may mediate distinct visual tasks in a certain region of the visual field by optimizing sensitivity and/or resolving power.

1.
Ali, M.A., and M.A. Anctil (1976) Retinas of Fishes. An Atlas. Springer-Verlag, Berlin.
2.
Anders, J.J., and E. Hibbard (1974) The optic system of the teleost Cichlasoma biocellatum. J. Comp. Neurol., 158: 145–154.
3.
Boycott, B.B., and L. Peichl (1981) Appendix: neurofibrillar staining of cat retinae. Proc. Roy. Soc. Lond. B, 212: 153–156.
4.
Braekevelt, C.R. (1982) Photoreceptor fine structure in the goldeye (Hiodon alosoides) (Teleostei). Anat. Embryol., 165: 177–192.
5.
Brauer, A. (1902) Über den Bau der Augen einiger Tiefseefische. Verhandlungen der Deutschen zoologischen Gesellschaft (Leipzig), 12: 42–57.
6.
Brauer, A. (1908) Die Tiefseefische. 2. Anatomische Teil. Wissenschaftliche Ergebnisse Deutscher Tiefsee-Expedition auf dem Dampfer ‘Valdivia’, 15: 1–266.
7.
Browman, H.I., W.C. Gordon, B.I. Evans, and W.J. O’Brien (1990) Correlation between histological and behavioral measures of visual acuity in zooplanktonivorous fish, the white crappie (Poxomis annularis). Brain Behav. Evol., 35: 85–97.
8.
Bunt, S.M., and T.J. Horder (1983) Evidence for an orderly arrangement of optic axons within the optic nerves of the major non-mammalian vertebrate classes. J. Comp. Neurol., 213: 94–114.
9.
Burkhardt, D.A., G. Hassin, J.S. Levine, and E.F. McNichol (1980) Electrical responses and photopigments of twin cones in the retina of the walleye. J. Physiol. Lond., 309: 215–228.
10.
Chun, C. (1893) Leuchtorgane und Facettenaugen. Ein Beitrag zur Theorie des Sehens in großen Meerestiefen. Biologisches Zentralblatt (Leipzig), 13: 544.
11.
Clarke, G.L., and E.J. Denton (1962) Light and animal life. In The Sea, Vol. 1 (ed. by M.N. Hill), Interscience Publishers, New York. pp. 256–267.
12.
Collin, S.P. (1989) Topography and morphology of retinal ganglion cells in the coral trout Plectropoma leopardus (Serranidae): a retrograde cobaltous-lysine study. J. Comp. Neurol., 281: 143–158.
13.
Collin, S.P., and R.G. Northcutt (1993) The visual system of the Florida garfish, Lepisosteus platyrhincus (Ginglymodi). III. Retinal ganglion cells. Brain Behav. Evol., 42: 295–320.
14.
Collin, S.P., and J.C. Partridge (1996) Retinal specialisations in the eyes of deep-sea teleosts. J. Fish Biol., 49 (suppl. 1): 157–174.
15.
Collin, S.P., and J.D. Pettigrew (1988a) Retinal topography in reef teleosts. I. Some species with well developed areae but poorly developed streaks. Brain Behav. Evol., 31: 269–282.
16.
Collin, S.P., and J.D. Pettigrew (1988b) Retinal topography in reef teleosts. II. Some species with prominent horizontal streaks and high density areae. Brain Behav. Evol., 31: 283–295.
17.
Collin, S.P., and J.D. Pettigrew (1988c) Retinal ganglion cell topography in teleosts: a comparison between Nissl-stained material and retrograde labelling from the optic nerve. J. Comp. Neurol., 276: 412–422.
18.
Collin, S.P., and J.D. Pettigrew (1989) Quantitative comparison of the limits on visual spatial resolution set by the ganglion cell layer in twelve species of reef teleosts. Brain Behav. Evol., 34: 184–192.
19.
Collin, S.P., R.V. Hoskins, and J.C. Partridge (1996) An unusual retinal specialisation subtending the binocular field in the tubular eye of the deep-sea pearleye, Scopelarchus michaelsarsi. Proc. Aust. Neuroscience Soc., 7: 34.
20.
Collin, S.P., R.V. Hoskins, and J.C. Partridge (1997) Tubular eyes of deep-sea fishes: a comparative study of retinal topography. Brain Behav. Evol., 50: 335–357.
21.
Contino, F. (1939) Das Auge des Argyropelecus hemigymnus. Morphologie, Bau, Entwicklung, und Refraktion. Albrecht von Graefes Archiv für Ophthalmologie, 140: 390–441.
22.
Cook, J.E. (1996) Spatial properties of retinal mosaics: an empirical evaluation of some existing measures. Visual Neurosci., 13: 15–30.
23.
Cook, J.E., and D.L. Becker (1991) Regular mosaics of large displaced and non-displaced ganglion cells in the retina of a cichlid fish. J. Comp. Neurol., 306: 668–684.
24.
Cook, J.E., and S.C. Sharma (1995) Large retinal ganglion cells in the channel catfish (Ictalurus punctatus): three types with distinct dendritic stratification patterns form similar but independent mosaics. J. Comp. Neurol., 362: 331–349.
25.
Denton, E.J. (1990). Light and vision at depths greater than 200 metres. In Light and Life at Sea (ed. by P.J. Herring, A.K. Campbell, M. Whitfield, and L. Maddock), Cambridge University Press, Cambridge, pp. 127–148.
26.
Engström, K. (1963) Cone types and cone arrangements in teleost retinae. Acta Zool., 44: 179–243.
27.
Enoch, J.M. (1963) Optical properties of the retinal receptors. J. Opt. Soc. Amer., 53: 71–85.
28.
Frank, B.D., and J.G. Hollyfield (1987) Retinal ganglion cell morphology in the frog, Rana pipiens. J. Comp. Neurol., 266: 413–434.
29.
Franz, V. (1905) Zur Anatomie, Histologie und funktionellen Gestaltung des Selachierauges. Jenaische Zeitschrift für Naturwissenschaft (Jena), 33: 697.
30.
Franz, V. (1907) Bau des Eulenauges und Theorie des Teleskopauges. Biologisches Zentralblatt (Leipzig), 27: 271–350.
31.
Frederiksen, R.D. (1973) On the retinal diverticula in the tubular-eyed opisthoproctid deepsea fishes Macropinna microstoma and Dolichopteryx longipes. Vidensk. Meddr. Dansk Naturh. Foren., 136: 233–244.
32.
Frederiksen, R.D. (1976) Retinal tapetum containing discrete reflectors and photoreceptors in the bathypelagic teleost Omosudis lowei. Vidensk. Meddr. Dansk Naturh. Foren., 139: 109–146.
33.
Hayes, B., G.R. Martin, and M. de L. Brooke (1991) Novel area serving binocular vision in the retinae of procellariiform seabirds. Brain Behav. Evol., 37: 79–84.
34.
Hughes, A. (1975) A quantitative analysis of the cat retinal ganglion cell topography. J. Comp. Neurol., 163: 107–128.
35.
Hughes, A. (1981a) Cat retina and the sampling theorem; the relation of transient and sustained brisk-unit cutt-off frequency to alpha and beta-mode cell density. Exp. Brain Res., 42: 196–202.
36.
Hughes, A. (1981b) Population magnitudes and distribution of the major modal classes of cat retinal ganglion cell as estimated from HRP filling and a systematic survey of the soma diameter spectra for classical neurons. J. Comp. Neurol., 197: 303–339.
37.
Hughes, A. (1985) New perspectives in retinal organization. In Progress in Retinal Research (ed. by N.N. Osborne and G. Chader), Pergamon Press, New York, pp. 243–313.
38.
Johnson, R.K. (1974) Revision of the Alepisauroid family of Scopelarchidae (Pisces, Myctophiformes). Fieldiana Zoology, 66: 1–249.
39.
Kunz, Y.W., M.N. Shuilleabhain, and E. Callaghan (1985) The eye of the venomous marine teleost Trachinus vipera with special reference to the structure and ultrastructure of visual cells and pigment epithelium. Exp. Biol., 43: 161–178.
40.
Land, M.F. (1981) Optics and vision in invertebrates. In Handbook of Sensory Physiology VII/6B (ed. by H.J. Autrum), Springer-Verlag, Berlin, pp. 471–592.
41.
Locket, N.A. (1970) Deep-sea fish retinas. British Med. Bull., 26: 107–111.
42.
Locket, N.A. (1971) Retinal anatomy in some scopelarchid deepsea fishes. Proc. Roy. Soc. Lond. B. 178: 161–184.
43.
Locket, N.A. (1977) Adaptations to the deepsea environment. In The Visual System in Vertebrates. Handbook of Sensory Physiology, Vol. VII/5 (ed. by F. Crescitelli), Springer-Verlag, Berlin, pp. 67–192.
44.
Lythgoe, J.N. (1979) The Ecology of Vision. Clarendon Press, Oxford.
45.
Matthiessen, L. (1880) Untersuchungen über dem Aplanatismus und die Periscopie der Kristallinsen in den Augen der Fische. Pflügers Archiv für die gesamte Physiologie des Menschen und der Tiere (Bonn), 21: 287–307.
46.
McEwan, M.R. (1938) A comparison of the retina of the mormyrids with that of various other teleosts. Acta Zool. (Stockholm), 19: 427–465.
47.
Mednick, A.S., and A.D. Springer (1988) Asymmetric distribution of retinal ganglion cells in goldfish. J. Comp. Neurol., 268: 49–59.
48.
Munk, O. (1965) Omosudis lowei Günther 1887 – a bathypelagic deep-sea fish with an almost pure cone retina. Vidensk. Meddr. Dansk Naturh. Foren., 128: 341–355.
49.
Munk, O. (1966) Ocular anatomy of some deepsea teleosts. Dana Report, 70: 1–62.
50.
Munk. O. (1975) On the eyes of two foveate notosudid teleosts, Scopelosaurus hoedti and Ahliesaurus berryi. Vidensk. Meddr. Dansk Naturh. Foren., 138: 87–125.
51.
Munk, O. (1977) The visual cells and retinal tapetum of the foveate deep-sea fish Scopelosaurus lepidus (Teleostei). Zoomorphol., 87: 21–49.
52.
Munk, O. (1989) Duplex retina in the mesopelagic deep-sea teleost Lestidiops affinis (Ege, 1930). Acta Zool. (Stockholm), 70: 143–149.
53.
Murphy, A., and N.A. Locket (1995) Multiple banks of rods in the grouped retina of a deep-sea teleost. Proc. Aust. Neuroscience Soc., 6: 203.
54.
Oswaldo-Cruz, E., C.W. Picanco-Diniz, and L.C.L. Silveira (1986) Quantitative analysis of the retinal ganglion cell size in Amazon rodents. J. Physiol. (Lond.), 374: 39P.
55.
Oyster, C.W., E.S. Takahashi, K.R. Fry, and D.M. Lam (1987) Ganglion cell density in albino and pigmented rabbit retinas labeled with a ganglion cell-specific monoclonal antibody. Brain Res., 425: 25–33.
56.
Partridge, J.C., S.N. Archer, and J. Van Oostrum (1992) Single and multiple visual pigments in deep-sea fishes. J. Mar. Biol. Assoc. U.K., 72: 113–130.
57.
Peichl, L. (1989) Alpha and delta ganglion cells in rat retina. J. Comp. Neurol., 286: 120–139.
58.
Peichl, L. (1992) Topography of ganglion cells in the dog and wolf retina. J. Comp. Neurol., 324: 603–620.
59.
Peichl, L., E.H. Buhl, and B.B. Boycott (1987a) Alpha ganglion cells in rabbit retina. J. Comp. Neurol., 263: 25–41.
60.
Peichl, L., H. Ott, and B.B. Boycott (1987b) Alpha ganglion cells in mammalian retinae. Proc. Roy. Soc. Lond. B, 231: 169–197.
61.
Pettigrew, J.D., B. Dreher, C.S. Hopkins, M.J. McCall, and M. Brown (1988) Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: implications for visual acuity. Brain Behav. Evol., 32: 39–56.
62.
Provis, J.M. (1979) The distribution and size of ganglion cells in the retina of the pigmented rabbit: quantitative analysis. J. Comp. Neurol., 185: 121–138.
63.
Rofen, R.R. (1966) Family Omosudidae. In Fishes of the Western North Atlantic No. 1, Part 5. Memoirs Sears Foundation for Marine Research, New Haven, pp. 462–481.
64.
Scholes, J.H. (1979) Nerve fibre topography in the retinal projection to the tectum. Nature, 278: 620–624.
65.
Somiya, H., and T. Tamura (1971) On the eye of ‘yellow lens’ fish Chlorophthalmus albatrossis. Bull. Jap. Soc. Scient. Fish, 37: 840–845.
66.
Tobey, F.L., Jr., J.M. Enoch, and J.H. Scandrett (1975) Experimentally determined optical properties of goldfish cones and rods. Invest. Ophthalmol., 14: 7–23.
67.
Wagner, H.-J. (1978) Cell types and connectivity patterns in mosaic retinas. Adv. Anat. Embryol. Cell Biol., 55: 1–81.
68.
Wässle, H., L. Peichl, and B.B. Boycott (1981) Morphology and topography of ON- and OFF-alpha cells in the cat retina. Proc. Roy. Soc. Lond. B, 212: 157–175.
69.
Whitehead, P.J.P., M.-L. Bauchot, J.-C. Hureau, J. Nielsen, and E. Tortonese (1989) Fishes of the North-Eastern Atlantic and the Mediterranean. Vol. 1-III. Unesco, United Kingdom.
70.
Witkovsky, P., M. Shakib, and H. Ripps (1974) Interreceptoral junctions in the teleost retina. Invest. Ophthalmol. Vis. Sci., 13: 996–1009.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.