As part of a recent program on the evolution of somatosensory systems in vertebrates, the cytoarchitecture, chemoarchitecture, and fiber connections of the caudal rhombencephalic alar plate were studied in the ribbed newt, Pleurodeles waltl. This part of the brain stem includes ill-defined dorsal column and lateral cervical nuclei. A cytoarchitectonic analysis revealed that the caudal medullary alar plate consists of an inner and an outer cell layer. The dorsomedial part of the outer cell layer at the obex level contains the dorsal column nucleus (DCN), whereas its ventrolateral part constitutes the lateral cervical nucleus (LCN). NADPH-diaphorase histochemistry and calbindin D-28k immunohistochemistry clearly delineate the main components of the compact inner cell layer, i.e. the nucleus of the solitary tract dorsally and the nucleus of the descending trigeminal tract ventrally. Neither NADPH-diaphorase-labeled nor calbindin D-28k positive neurons were observed in the DCN and LCN. With anterograde and retrograde tracing, the DCN and LCN were further delineated. Labeling of ascending dorsal root projections showed that the dorsal column and the DCN are somatotopically arranged: lumbar primary afferent fibers terminate on medial DCN neurons, whereas cervical primary afferent fibers terminate on lateral DCN neurons. The LCN is densely innervated by the dorsolateral funiculus. Retrograde tracing showed extensive, predominantly contralateral projections of both the DCN and LCN to the torus semicircularis and the ventral thalamus. These data show that even in the poorly segregated caudal rhombencephalic alar plate of urodeles a DCN and LCN can be distinguished with afferent and efferent projections comparable to those in anurans and other terrestrial vertebrates.

1.
Adams, J.C. (1981) Heavy metal intensification of DAB-based HRP reaction product. J. Histochem. Cytochem., 29: 775.
2.
Adli, D.S.H., B.M. Rosenthal, G.L. Yuen, R.H. Ho, and W.L.R. Cruce (1988) Immunohistochemical localization of substance P, somatostatin, enkephalin, and serotonin in the spinal cord of the Northern leopard frog, Rana pipiens. J. Comp. Neurol., 275: 106–116.
3.
Alonso, J.R., Arévalo, O.E. García, A. Porteros, J.G. Briñón, and J. Aijón (1995) NADPH-diaphorase active and calbindin D-28k-immunoreactive neurons and fibers in the olfactory bulb of the hedgehog (Erinaceus europaeus). J. Comp. Neurol., 351: 307–327.
4.
Angaut-Petit, D. (1975a) The dorsal column system: I. Existence of long ascending postsynaptic fibers in the cat’s fasciculus gracilis. Exp. Brain Res., 22: 457–470.
5.
Angaut-Petit, D. (1975b) The dorsal column-system: II. Functional properties and bulbar relay of the postsynaptic fibers of the cat’s fasciculus gracilis. Exp. Brain Res., 22: 471–493.
6.
Antal, M., I. Tornai, and G. Székely (1980) Longitudinal extent of dorsal root fibers in the spinal cord and brain stem of the frog. Neuroscience, 5: 1311–1322.
7.
Antal, M., T.F. Freund, and E. Polgár (1990) Calcium-binding proteins, parvalbumin- and calbindin-D28k-immunoreactive neurons in the rat spinal cord and dorsal root ganglia: a light and electron microscopic study. J. Comp. Neurol., 295: 467–484.
8.
Bartels, M., H. Münz, and B. Claas (1990) Representation of lateral line and electrosensory systems in the midbrain of the axolotl, Ambystoma mexicanum. J. Comp. Physiol., 167: 347–356.
9.
Bennett, G.J., N. Nishikawa, G.W. Lu, M.J. Hoffert, and R. Dubner (1984) The morphology of dorsal column postsynaptic spinomedullary neurons in the rat. J. Comp. Neurol., 224: 568–578.
10.
Blomqvist, A., and J. Broman (1993) Serotoninergic innervation of the dorsal column nuclei and its relation to cytoarchitectonic subdivisions: a immunohistochemical study in cats and monkeys (Aotus trivirgatus). J. Comp. Neurol., 327: 584–596.
11.
Bredt, D.S., and S.H. Snyder (1992) Nitric oxide, a novel neuronal messenger. Neuron, 8: 3–11.
12.
Catalano, J.V., and G. Lamarche (1957) Central pathways for cutaneous impulses in the cat. Amer. J. Physiol., 189: 141–144.
13.
Celio, M.R. (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience, 35: 375–475.
14.
Comer, C., and P. Grobstein (1981) Organization of sensory inputs to the midbrain of the frog, Rana pipiens. J. Comp. Physiol. A, 142: 161–168.
15.
Dohrn, C.S., M.A. Mullett, R.H. Price, and A.J. Beitz (1994) Distribution of nitric oxide synthase-immunoreactive interneurons in the spinal trigeminal nucleus. J. Comp. Neurol., 346: 449–460.
16.
Finkenstädt, T., S.O.E. Ebbesson, and J.P. Ewert (1983) Projections to the midbrain tectum in Salamandra salamandra L. Cell Tiss. Res., 234: 39–55.
17.
Forehand, C.J., and P.B. Farel (1982) Spinal cord development in anuran larvae. II. Ascending and descending pathways. J. Comp. Neurol., 209: 395–408.
18.
Fritzsch, B. (1980) retinal projections in European Salamandriae. Cell Tissue Res., 213: 325–341.
19.
Fritzsch, B. (1993) Fast axonal diffusion of 3,000 molecular weight dextran amines. J. Neurosci. Meth., 50: 95–103.
20.
Funke, K. (1988) Spinal projections to the dorsal column nuclei in pigeons. Neurosci. Lett., 91: 295–300.
21.
Giesler, G.J., R.L. Nahin, and A.M. Madsen (1984) Postsynaptic dorsal column pathway of the rat. I. Anatomical studies. J. Neurophysiol., 51: 260–275.
22.
Glover, J.C., G. Petursdottir, and J.K.S. Jansen (1986) Fluorescent dextran-amines as neuronal tracers in the nervous system of the chicken embryo. J. Neurosci. Meth., 18: 243–254.
23.
González, A., and M. Muñoz (1987) Some connections of the area octavolateralis of Pleurodeles waltlii. A study with horseradish peroxidase under in vitro conditions. Brain Res., 423: 338–342.
24.
González, A., and M. Muñoz (1988) Central distribution of the efferent cells and primary afferent fibers of the trigeminal nerve in Pleurodeles waltlii (Amphibia, Urodela). J. Comp. Neurol., 270: 517–527.
25.
González, A., and W.J.A.J. Smeets (1991) Comparative analysis of dopamine and tyrosine hydroxylase immunoreactivities in the brain of two amphibians, the anuran Rana ridibunda and the urodele Pleurodeles waltlii. J. Comp. Neurol., 303: 457–477.
26.
González, A., and W.J.A.J. Smeets (1995) Noradrenergic and adrenergic systems in the brain of the urodele amphibian, Pleurodeles waltlii, as revealed by immunohistochemical methods. Cell Tiss. Res., 279: 619–627.
27.
González, A., H.J. ten Donkelaar, and R. de Boer-van Huizen (1984) Cerebellar connections in Xenopus laevis. An HRP study. Anat. Embryol., 169: 167–176.
28.
Gruberg, E.R. (1972) Optic fiber projections of the tiger salamander Ambyostoma tigrinum. J. Hirnforsch., 14: 339–411.
29.
Gruberg, E.R., and W.A. Harris (1981) The serotoninergic somatosensory projection to the tectum of normal and eyeless salamanders. J. Morphol., 170: 55–69.
30.
Gruberg, E.R., and S.P. Solish (1978) The relationship of a monoamine fiber system to a somatosensory tectal projection in the salamander Ambyostoma tigrinum. J. Morphol., 157: 137–150.
31.
Grüsser-Cornehls, U., and W. Himstedt (1973) Responses of retinal and tectal neurons of the salamander (Salamandra salamandra L.) to moving visual stimuli. Brain Behav. Evol., 7: 145–168.
32.
Halliday, G.M., Y.W. Li, J.R. Oliver, T.H. Joh, R.G.H. Cotton, P.R.C. Howe, L.B. Geffen, and W.W. Blessing (1988) The distribution of neuropeptide Y-like immunoreactive neurons in the human medulla oblongata. Neuroscience, 26: 179–191.
33.
Harris, W.A. (1982) The transplantation of eyes to genetically eyeless salamanders: visual projections and somatosensory interactions. J. Neurosci., 2: 339–353.
34.
Harris, W.A. (1989) Neurobiology. In Developmental Biology of the Axolotl (ed. by J.B. Armstrong and G.M. Malacinski), Oxford University Press, New York, pp. 157–168.
35.
Herrick, C.J. (1914) The medulla oblongata of larval Amblystoma. J. Comp. Neurol., 24: 343–427.
36.
Herrick, C.J. (1930) The medulla oblongata of Necturus. J. Comp. Neurol., 50: 1–96.
37.
Herrick, C.J. (1942) Optic and postoptic systems in the brain of Amblystoma tigrinum. J. Comp. Neurol., 77: 191–353.
38.
Herrick, C.J. (1944) The fasciculus solitarius and its connections in amphibians and fishes. J. Comp. Neurol., 81: 307–331.
39.
Herrick, C.J. (1948) The Brain of the Tiger Salamander Amblystoma tigrinum. University of Chicago Press, Chicago.
40.
Herrick, C.J., and G.H. Bishop (1958) A comparative survey of the spinal lemniscus systems. In Reticular Formation of the Brain (ed. by H.H. Jasper, L.D. Proctor, R.S. Knighton, W.C. Noshay, and R.T. Costello), Brown, Boston, pp. 353–360.
41.
Jakway, J.S., and W. Riss (1972) Retinal projections in the tiger salamander, Amblystoma tigrinum. Brain Behav. Evol., 5: 401–442.
42.
Kingsbury, B.F. (1895) On the brain of Necturus maculosus. J. Comp. Neurol., 5: 139–205.
43.
Kreht, H. (1940) Die markhaltigen Fasersysteme im Gehirn der Anuren und Urodelen und ihre Myelogenie; zugleich ein kritischer Beitrag zu den Flechsigschen myelogenetischen Grundgesetzen. I. Einleitung und Medulla oblongata. Z. Mikrosk. Anat. Forsch., 41: 417–432.
44.
Lázár, G., J.L. Maderdrut, and T. Merchenthaler (1990) Some enkephalinergic pathways in the brain of Rana esculenta. Cell Tissue Res., 260: 535–548.
45.
Leight, P.N., J.H. Connick, and T.W. Stone (1990) Distribution of NADPH-diaphorase positive cells in the rat brain. Comp. Biochem. Physiol., 97C: 259–264.
46.
Manteuffel, G., and C. Naujoks-Manteuffel (1990) Anatomical connections and electrophysiological properties of toral and dorsal tegmental neurons in the terrestrial urodele Salamandra salamandra. J. Hirnforsch., 31: 65–76.
47.
Maslany, S., D.P. Crockett, and M.D. Egger (1992) Differential distribution of calcium-binding proteins in the dorsal column nuclei and spinal cord in the rat. Soc. Neurosci. Abstr., 18: 1017.
48.
Meller, S.T., and G.F. Gebhart (1993) Nitric oxide (NO) and nociceptive processing in the spinal cord. Pain, 52: 127–136.
49.
Menétrey, D., J. de Pommery, K.G. Baimbridge, and M. Thomasset (1992a) Calbindin-D28k (CaBP28k)-like immunoreactivity in ascending projections. I. Trigeminal nucleus caudalis and dorsal vagal projections. Eur. J. Neurosci., 4: 61–69.
50.
Menétrey, D., J. de Pommery, K.G. Baimbridge, and M. Thomasset (1992b) Calbindin-D28k (CaBP28k)-like immunoreactivity in ascending projections. II. Spinal projections to brainstem and mesencephalic areas. Eur. J. Neurosci., 4: 70–76.
51.
Merchenthaler, I., G. Lázár, and J.L. Maderdrut (1989) Distribution of proenkephalin-derived peptides in the brain of Rana esculanta. J. Comp. Neurol., 281: 23–39.
52.
Morin, F. (1955) A new spinal pathway for cutaneous impulses. Amer. J. Physiol., 183: 245–252.
53.
Muñoz, A., M. Muñoz, A. González, and H.J. ten Donkelaar (1994a) Spinathalamic projections in amphibians as revealed with anterograde tracing techniques. Neurosci. Lett., 171: 81–84.
54.
Muñoz, A., M. Muñoz, A. González, and H.J. ten Donkelaar (1994b) The dorsal column-medial lemniscal projection of anuran amphibians. Eur. J. Morphol., 32: 283–287.
55.
Muñoz, A., M. Muñoz, A. González, and H.J. ten Donkelaar (1995) The anuran dorsal column nucleus: organization, immunohistochemical characterization and fiber connections in Rana perezi and Xenopus laevis. J. Comp. Neurol., 363: 197–220.
56.
Muñoz, A., M. Muñoz, A. González, and H.J. ten Donkelaar (1996) Evidence for an anuran homologue of the mammalian spinocervicothalamic system: an in vitro study in Xenopus laevis. Eur. J. Neurosci., 8: 1390–1400.
57.
Muñoz, A., M. Muñoz, A. González, and H.J. ten Donkelaar (1997) Spinal ascending pathways in amphibians: cells or origin and main targets. J. Comp. Neurol., 378: 205–228.
58.
Muñoz, A., M. Muñoz, A. González, C. Machín, and C. Rúa (1991) Ascending connections from the spinal cord in the anuran amphibian Rana ridibunda. Eur. J. Neurosci., Suppl. 4: 24.
59.
Muñoz, M., A. Muñoz, O. Marin, J.R. Alonso, R. Arevalo, A. Porteros, and A. González (1996) Topographical distribution of NADPH-diaphorase activity in the central nervous system of the frog, Rana perezi. J. Comp. Neurol., 367: 54–69.
60.
Naujoks-Manteuffel, C., and G. Manteuffel (1988) Origins of descending projections to the medulla oblongata and rostral medulla spinalis in the urodele Salamandra salamandra (Amphibia). J. Comp. Neurol., 273: 187–206.
61.
Neary, T.J., and W. Wilczynski (1977) Ascending thalamic projections from the obex region in ranid frogs. Brain Res., 138: 529–533.
62.
Neary, T.J., and W. Wilczynski (1979) Anterior and posterior thalamic afferents in the bullfrog Rana catesbeiana. Soc. Neurosci. Abstr., 5: 144.
63.
Nieuwenhuys, R., and M. Cornelisz (1971) Ascending projections from the spinal cord in the axolotl (Ambystoma mexicanum). Anat. Rec., 169: 388.
64.
Nikundiwe, A.M., R. de Boer-van Huizen, and H.J. ten Donkelaar (1982) Dorsal root projections in the clawed toad (Xenopus laevis) as demonstrated by anterograde labeling with horseradish peroxidase. Neuroscience, 7: 2089–2103.
65.
Northcutt, R.G. (1987) Lungfish neural characters and their bearing on sarcopterygian phylogeny. J. Morphol., Suppl., 1: 277–297.
66.
Opdam, P., and R. Nieuwenhuys (1976) Topological analysis of the brain stem of the axolotl Ambystoma mexicanum. J. Comp.Neurol., 165: 285–306.
67.
Petkó, M., and A. Sánta (1992) Distribution of calcitonin gene-related peptide immunoreactivity in the central nervous system of the frog, Rana esculenta. Cell Tiss. Rev., 269: 525–534.
68.
Pritz, M.B., and M.E. Stritzel (1994) Anatomical identification of a postsynaptic dorsal column system in a reptile, Caiman crocodilus. Brain Behav. Evol., 43: 233–243.
69.
Rausell, E., and E.G. Jones (1991a) Histochemical and immunocytochemical compartments of the thalamic VPM nucleus in monkeys and their relationship to the representational map. J. Neurosci., 11: 210–225.
70.
Rausell, E., and E.G. Jones (1991b) Chemically distinct compartments of the thalamic VPM nucleus in monkeys relay principal and spinal trigeminal pathways to different layers of the somatosensory cortex. J. Neurosci., 11: 226–237.
71.
Rausell, E., C.S. Bae, A. Viñuela, G.W. Huntley, and E.G. Jones (1992) Calbindin and parvalbumin cells in monkey VPL thalamic nucleus: distribution, laminar cortical projections, and relations to spinothalamic terminations. J. Neurosci., 12: 4088–4111.
72.
Ren, K., and M.A. Ruda (1994) A comparative study of the calcium-binding proteins calbindin-D28k, calretinin, calmodulin and parvalbumin in the rat spinal cord. Brain Res. Rev., 19: 163–179.
73.
Rettig, G. (1988) Connections of the tectum opticum in two urodeles (Salamandra salamandra and Bolitoglossa subpalmata) with a special reference to the nucleus isthmi. J. Hirnforsch., 29: 5–16.
74.
Roth, G. (1987) Visual Behavior in Salamanders. Studies in Brain Function, Vol. 14. Springer, Berlin.
75.
Roth, G., and D.B. Wake (1985) The structure of the brainstem and cervical spinal cord in lungless salamanders (Family Plethodontidae) and its relation to feeding. J. Comp. Neurol., 241: 99–110.
76.
Roth, G., C. Naujoks-Manteuffel, and W. Grunwald (1990) Cytoarchitecture of the tectum mesencephali in salamanders: a Golgi and HRP study. J. Comp. Neurol., 291: 27–42.
77.
Roth, G., U. Dicke, and K. Nishikawa (1992) How do ontogeny, morphology, and physiology of sensory systems constrain and direct the evolution of amphibians? Am. Nat., 139: S105–S124.
78.
Roth, G., K. Nishikawa, C. Naujoks-Manteuffel, A. Schmidt, and D.B. Wake (1993) Paedomorphosis and simplification in the nervous system of salamanders. Brain Behav. Evol., 42: 137–170.
79.
Rustioni, A. (1973) Non-primary afferents to the nucleus gracilis from the lumbar cord of the cat. Brain Res., 51: 81–95.
80.
Rustioni, A., and A.B. Kaufman (1977) Identification of cells of origin of non-primary afferents to the dorsal column nuclei of the cat. Exp. Brain Res., 27: 1–14.
81.
Scherer-Singler, U., S.R. Vincent, H. Kimura, and E.G. McGeer (1983) Demonstration of a unique population of neurons with NADPH-diaphorase histochemistry. J. Neurosci. Meth., 2: 229–234.
82.
Schuman, E.M., and D.V. Madison (1994) Nitric oxide and synaptic function. Ann. Rev. Neurosci., 17: 153–183.
83.
Silvey, G.E., R.L. Gulley, and R.A. Davidoff (1974) The frog dorsal column nucleus. Brain Res., 73: 421–437.
84.
Steinbusch, H.W.M. (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat: cell bodies and terminals. Neuroscience, 6: 557–618.
85.
Sternberger, L.A. (1979) Immunohistochemistry. Wiley, New York.
86.
Stirling, R.V., and K. Brändle (1982) Expansion of the visual projection to the tectum of axolotls during metamorphosis. Dev. Brain Res., 5: 343–345.
87.
Székely, G., N, Antal, and T. Görcs (1980) Direct dorsal root projection onto the cerebellum in the frog. Neurosci. Lett., 19: 161–165.
88.
Taban, C.H., and M. Cathieni (1983) Distribution of substance P-like immunoreactivity in the brain of the newt (Triturus cristatus). J. Comp. Neurol., 216: 453–470.
89.
Takemura, M., S. Wakisaka, A. Yoshida, Y. Nagase, Y.C. Bae, and Y. Shigenaga (1994) NADPH-diaphorase in the spinal trigeminal nucleus oralis and rostral solitary tract nucleus of rats. Neuroscience, 61: 587–595.
90.
ten Donkelaar, H.J., and R. de Boer-van Huizen (1991) Observations on the development of ascending spinal pathways in the clawed toad, Xenopus laevis. Anat. Embryol., 183: 589–603.
91.
Thomas, E., and A.G.E. Pearse (1964) The solitary active cells: histochemical demonstration of damage-resistant nerve cells with a TPN-diaphorase reaction. Acta Neuropathol., 3: 238–249.
92.
Uddenberg, N. (1968) Functional organization of long, second order afferents in the dorsal funiculus. Exp. Brain Res., 4: 377–382.
93.
Ueda, S., Y. Nojyo, and Y. Sano (1984) Immunohistochemical demonstration of the serotonin neuron system in the central nervous system of the bullfrog, Rana catesbeiana. Acta Embryol., 169: 219–229.
94.
Urbán, L., and G. Székely (1982) The dorsal column nuclei of the frog. Neuroscience, 7: 1187–1196.
95.
Valtschanoff, J.G., R.J. Weinberg, and A. Rustioni (1992) NADPH diaphorase in the spinal cord of rats. J. Comp. Neurol., 321: 209–222.
96.
Valtschanoff, J.G., R.J. Weinberg, and A. Rustioni (1993) Nitric oxide synthase and amino acid neurotransmitters in the rat dorsal column nuclei. Soc. Neurosci. Abstr., 19: 328.
97.
Veenman, C.L., A. Reiner, and M.G. Honig (1992) Biotinylated dextran amine as an anterograde tracer for single- and double-labeling studies. J. Neurosci. Meth., 41: 239–354.
98.
Vincent, S.R., and H. Kimura (1992) Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience, 46: 755–784.
99.
Westman. J., A. Blomqvist, C. Köhler, and J.Y. Wu (1984) Light and electron microscopic localization of glutamic acid decarboxylase and substance P in the dorsal column nuclei of the cat. Neurosci. Lett., 551: 347–352.
100.
Will, U. (1988) Organization and projections of the area octavolateralis in amphibians. In The Evolution of the Amphibian Auditory System (ed. by B. Fritzsch, M.J. Ryan, W. Wilczynski, T. Hetherington, and W. Walkowiak), Wiley, New York, pp. 185–208.
101.
Will, U. (1989) Central mechanosensory lateral line system in amphibians. In The Mechanosensory Lateral Line: Neurobiology and Evolution (ed. by S. Coombs, P. Görner, and H. Münz), Springer, Berlin, pp. 365–386.
102.
Willis, W.D., and R.E. Coggeshall (1991) Sensory Mechanisms of the Spinal Cord, 2nd Ed. Plenum Press, New York.
103.
Woodburne, R.T. (1936) A phylogenetic consideration of the primary and secondary centers and connections of the trigeminal complex in a series of vertebrates. J. Comp. Neurol., 65: 403–501.
104.
Zittlau, K.E., M. Bartels, and H. Münz (1988) Representation of octavolateralis systems in the brainstem of Ambystoma mexicanum.In Sense organs. Interfaces Between Environment and Behaviour (ed. by N. Elsner and F.G. Barth), Thieme, Stuttgart, p. 165.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.