Intraretinal blood vessels are present in some and absent in other vertebrate species, including the mammals. Among the marsupials, both vascular and avascular retinae are seen. We determined the funduscopic appearance of the eye, investigated the functional aspects of ocular blood flow in both types of retina in marsupials and compared our results with known patterns in placental mammals. The Australian polyprotodont marsupials, the Tasmanian devil, Sarcophilus harrisii andthe quoll, Dasyurus viverrinus, together with an American polyprotodont, the Virginia opossum, Didelphis virginiana, demonstrate variable degrees of tapetal differentiation, pigmentation and a very close parallel course of their intraretinal arteries and veins over considerable distances. Using the technique of fluorescein angiography, we found that retinal blood flow in the 3 vascular Australian species commenced with arterial filling. Early venous was seen next, followed by the capillary blush. This unusual sequence of vascular flow differs from that of the arterial-capillary-venous filling seen in placental mammals. This difference is most likely a consequence of the known looped, end artery organisation found within marsupial nervous systems, of which the retinae are a part. The 2 diprotodont marsupials examined, the brushtail possum, Trichosurus vulpecula, andthe sugar glider, Petaurus breviceps, possess avascular retinae. Only a small residual tuft of fluorescein-impermeable vessels projects from the optic disc into the vitreous. Interestingly, the structural complexity of the central visual system in diprotodonts all of whom possess avascular retinae) is commonly accepted as being greater than that of the stem polyprotodont line (which possess vascular retinae). If retinal function matches this internal complexity, then retinal avascularity may, as in birds, be associated with superior vision. However, as the retinae of these mammals clearly lack any nutritive mechanisms directly analogous to those in the retinae of, say, birds or the megachiropteran bats, their retinal nutritive pathways remain enigmatic.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.