We explored coastal streams, rivers, and swamps in the Guianas of South America and found eleven species of gymnotiform fishes with pulse discharges. Each species has a characteristic electric organ discharge (EOD) waveform of 0.5-5 ms duration; at least two species appear to have a natural sex difference in their EODs which is apparent when comparing large adult males and females. Three sensory coding mechanisms are proposed to explain how electric fish might be able to determine species and sex identity from such short electrical pulses. Spectral Coding: electroreceptors tuned to different frequencies encode the spectrum of the EOD as a cross-fiber stimulation pattern. Temporal Coding: EODs are encoded as a volley of nerve spikes patterned in the time domain. Scan Sampling: a receiver detects a signaler's EOD as an amplitude modulation or 'beat' set up by the combination of its own discharge with the signaler's. The receiver uses the modulation envelope to assess the signaler's EOD waveform. To distinguish between these three coding mechanisms, we tested the ability of one pulse gymnotiform, Hypopomus beebei, to discriminate one electric waveform from another by comparing the acceleration of the discharge rate to different stimuli. Stimuli are presented under two conditions: (a) when the stimulus pulse train is free-running compared to the fish's pulse train, and (b) when the stimulus train is phase-locked to the fish's discharge pulse train. Under the former condition scan sampling may be used; under the latter it will be impossible. Hypopomus discriminates the polarity of a single period sinusoidal stimulus under scanning conditions but does not discriminate under clamped conditions. Hypopomus gives the strongest response to single period sine waves of 670 Hz and weaker responses to sinusoids of lower and higher frequencies. Free-running and phase-locked stimuli evoke similar responses. Under free-running conditions, Hypopomus discriminates a series of EOD-like stimuli that have been phase-shifted by varying amounts, but under phase-locked conditions does not. Scan sampling is presented as a possible waveform recognition mechanism for pulse-discharging gymnotiform fishes.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.