Introduction: We aimed to investigate electrophysiologically and histopathologically, the protective effects of intratympanic memantine, an N-methyl-D-aspartate receptor antagonist, on ototoxicity caused by cisplatin, an anti-neoplastic agent used in many types of cancer. Methods: Thirty-seven guinea pigs with a normal auditory function were randomly allocated to group 1 (cisplatin; n = 8), group 2 (memantine; n = 8), group 3 (cisplatin + memantine; n = 8), group 4 (cisplatin + physiological serum [PS]; n = 8), and group 5 (control; n = 5). Auditory assessments were conducted using distortion product otoacoustic emissions (DPOAE) within a frequency range of 1–32 kHz and auditory brainstem responses (ABRs) within 8–32 kHz. A single dose of cisplatin (12 mg/kg) was administered intraperitoneally, followed by intratympanic administration of 0.2 mL of either memantine or PS to both ears at least half an hour before cisplatin administration. Subsequent auditory evaluations were conducted 72 h after cisplatin administration. Histopathological analyses were performed using light microscopy of the right ear and scanning electron microscopy (SEM) of the left ear. Results: Auditory evaluations conducted before and after treatment revealed significant findings. Specifically, within groups 3 and 4, ABR thresholds were elevated at all frequencies (p = 0.00), whereas the DPOAE signal-to-noise ratios were reduced at frequencies of 8, 12, 16, and 24 kHz (p = 0.001, p = 0.01, p = 0.01, and p = 0.00, respectively). Histopathologically, both light microscopy and SEM revealed that the cisplatin + memantine group exhibited fewer hair cells and nuclear degeneration in the spiral ganglion than the cisplatin and cisplatin + PS groups. Additionally, the stria vascularis thickness was greater in the cisplatin + memantine group than in cisplatin and cisplatin + PS groups. Conclusion: Despite the negative electrophysiological findings, the histopathological outcomes suggest that intratympanic memantine may have a potential protective effect against cisplatin-induced ototoxicity. However, further investigations are warranted to corroborate these findings and elucidate the underlying mechanisms of action of memantine.

1.
Rybak
LP
,
Ramkumar
V
.
Ototoxicity
.
Kidney Int
.
2007
;
72
(
8
):
931
5
.
2.
Rybak
LP
,
Mukherjea
D
,
Ramkumar
V
.
Mechanisms of cisplatin-induced ototoxicity and prevention
.
Semin Hear
.
2019
;
40
(
2
):
197
204
.
3.
Taş
BM
,
Simsek
G
.
Cisplatin ototoxicity
.
J Kırıkkkale Univ Fac Med
.
2017
;
19
(
1
):
30
6
.
4.
Dhukhwa
A
,
Al Aameri
RFH
,
Sheth
S
,
Mukherjea
D
,
Rybak
L
,
Ramkumar
V
.
Regulator of G protein signaling 17 represents a novel target for treating cisplatin induced hearing loss
.
Sci Rep
.
2021
;
11
(
1
):
8116
.
5.
Üstün Bezgin
S
,
Uygur
KK
,
Gökdoğan
Ç
,
Elmas
Ç
,
Göktaş
G
.
The effects of riluzole on cisplatin-induced ototoxicity
.
Int Arch Otorhinolaryngol
.
2019
;
23
(
3
):
E267
75
.
6.
Al Aameri
RFH
,
Alanisi
EMA
,
Oluwatosin
A
,
Al Sallami
D
,
Sheth
S
,
Alberts
I
, et al
.
Targeting CXCL1 chemokine signaling for treating cisplatin ototoxicity
.
Front Immunol
.
2023
;
14
:
1125948
.
7.
Sheth
S
,
Mukherjea
D
,
Rybak
LP
,
Ramkumar
V
.
Mechanisms of cisplatin-induced ototoxicity and otoprotection
.
Front Cell Neurosci
.
2017
;
11
:
338
.
8.
Wang
X
,
Zhou
Y
,
Wang
D
,
Wang
Y
,
Zhou
Z
,
Ma
X
, et al
.
Cisplatin-induced ototoxicity: from signaling network to therapeutic targets
.
Biomed Pharmacother
.
2023
;
157
:
114045
.
9.
Kopke
R
,
Allen
KA
,
Henderson
D
,
Hoffer
M
,
Frenz
D
,
Van de Water
T
.
A radical demise. Toxins and trauma share common pathways in hair cell death
.
Ann N Y Acad Sci
.
1999
;
884
:
171
91
.
10.
Duan
M
,
Agerman
K
,
Ernfors
P
,
Canlon
B
.
Complementary roles of neurotrophin 3 and a N-methyl-D-aspartate antagonist in the protection of noise and aminoglycoside-induced ototoxicity
.
Proc Natl Acad Sci USA
.
2000
;
97
(
13
):
7597
602
.
11.
Park
JS
,
Kim
T
,
Kim
D
,
Jeong
YI
.
The effect of oxidative stress and memantine-incorporated reactive oxygen species-sensitive nanoparticles on the expression of N-methyl-d-aspartate receptor subunit 1 in brain cancer cells for Alzheimer’s disease application
.
Int J Mol Sci
.
2021
;
22
(
22
):
12309
.
12.
Salih
NA
,
Al-Baggou
BK
.
Effect of memantine hydrochloride on cisplatin-induced neurobehavioral toxicity in mice
.
Acta Neurol Belg
.
2020
;
120
(
1
):
71
82
.
13.
Oliver
D
,
Ludwig
J
,
Reisinger
E
,
Zoellner
W
,
Ruppersberg
JP
,
Fakler
B
.
Memantine inhibits efferent cholinergic transmission in the cochlea by blocking nicotinic acetylcholine receptors of outer hair cells
.
Mol Pharmacol
.
2001
;
60
(
1
):
183
9
.
14.
Le Calvez
S
,
Avan
P
,
Gilain
L
,
Romand
R
.
CD1 hearing impaired mice. I: distortion product otoacoustic emission levels, cochlear function and morphology
.
Hear Res
.
1998
;
120
(
1–2
):
37
50
.
15.
de Freitas
MR
,
de Castro Brito
GA
,
de Carvalho
JV
Jr
,
Gomes
RM
Jr
,
Barreto Martins
MJ
,
de Albuquerque Ribeiro
R
.
Light microscopy study of cisplatin-induced ototoxicity in rats
.
J Laryngol Otol
.
2009
;
123
(
6
):
590
7
.
16.
Kinal
ME
,
Tatlipinar
A
,
Uzun
S
,
Keskin
S
,
Tekdemir
E
,
Özbeyli
D
, et al
.
Investigation of astaxanthin effect on cisplatin ototoxicity in rats by using otoacoustic emission, total antioxidant capacity, and histopathological methods
.
Ear Nose Throat J
.
2021
;
100
(
4
):
NP198
205
.
17.
Engle
JR
,
Tinling
S
,
Recanzone
GH
.
Age-related hearing loss in rhesus monkeys is correlated with cochlear histopathologies
.
PLoS One
.
2013
;
8
(
2
):
e55092
.
18.
Salehi
P
,
Akinpelu
OV
,
Waissbluth
S
,
Peleva
E
,
Meehan
B
,
Rak
J
, et al
.
Attenuation of cisplatin ototoxicity by otoprotective effects of nanoencapsulated curcumin and dexamethasone in a Guinea pig model
.
Otol Neurotol
.
2014
;
35
(
7
):
1131
9
.
19.
Poyrazoğlu
E
,
Güngör
A
,
Uğur
G
,
Okar
İ
,
Candan
H
.
Demonstration of the effects of ototopical ciproflokacin on cochlea with scanning electron microscopy (Experimentally study)
.
J Otorhinolaryngol Head Neck Surg
.
1997
;
5
:
116
21
. (Article in Turkish with an abstract in English).
20.
Waissbluth
S
,
Peleva
E
,
Daniel
SJ
.
Platinum-induced ototoxicity: a review of prevailing ototoxicity criteria
.
Eur Arch Oto-Rhino-Laryngol
.
2017
;
274
(
3
):
1187
96
.
21.
Youn
CK
,
Kim
J
,
Jo
ER
,
Oh
J
,
Do
NY
,
Cho
SI
.
Protective effect of tempol against cisplatin-induced ototoxicity
.
Int J Mol Sci
.
2016
;
17
(
11
):
1931
.
22.
Bokemeyer
C
,
Berger
CC
,
Hartmann
JT
,
Kollmannsberger
C
,
Schmoll
HJ
,
Kuczyk
MA
, et al
.
Analysis of risk factors for cisplatin-induced ototoxicity in patients with testicular cancer
.
Br J Cancer
.
1998
;
77
(
8
):
1355
62
.
23.
Kopelman
J
,
Budnick
AS
,
Sessions
RB
,
Kramer
MB
,
Wong
GY
.
Ototoxicity of high-dose cisplatin by bolus administration in patients with advanced cancers and normal hearing
.
Laryngoscope
.
1988
;
98
(
8 Pt 1
):
858
64
.
24.
Özel
HE
,
Özdoğan
F
,
Gürgen
SG
,
Esen
E
,
Genç
S
,
Selçuk
A
.
Comparison of the protective effects of intratympanic dexamethasone and methylprednisolone against cisplatin-induced ototoxicity
.
J Laryngol Otol
.
2016
;
130
(
3
):
225
34
.
25.
Waissbluth
S
,
Salehi
P
,
He
X
,
Daniel
SJ
.
Systemic dexamethasone for the prevention of cisplatin-induced ototoxicity
.
Eur Arch Otorhinolaryngol
.
2013
;
270
(
5
):
1597
605
.
26.
Sun
C
,
Wang
X
,
Chen
D
,
Lin
X
,
Yu
D
,
Wu
H
.
Dexamethasone loaded nanoparticles exert protective effects against Cisplatin-induced hearing loss by systemic administration
.
Neurosci Lett
.
2016
;
619
:
142
8
.
27.
Light
LP
,
Silverstein
H
.
Transtympanic perfusion: indications and limitations
.
Curr Opin Otolaryngol Head Neck Surg
.
2004
;
12
(
5
):
378
83
.
28.
Hughes
AL
,
Hussain
N
,
Pafford
R
,
Parham
K
.
Dexamethasone otoprotection in a multidose cisplatin ototoxicity mouse model
.
Otolaryngol Head Neck Surg
.
2014
;
150
(
1
):
115
20
.
29.
Daldal
A
,
Odabasi
O
,
Serbetcioglu
B
.
The protective effect of intratympanic dexamethasone on cisplatin-induced ototoxicity in Guinea pigs
.
Otolaryngol Head Neck Surg
.
2007
;
137
(
5
):
747
52
.
30.
Tas
A
,
Bulut
E
,
Tas
M
,
Yagiz
R
,
Turan
P
,
Huseyinoglu
A
, et al
.
Effects of intratympanic steroid on cisplatin ototoxicity: an electrophysiological and ultrastructural study
.
Int J Hematol Oncol
.
2018
;
28
(
2
):
104
11
.
31.
Topdag
M
,
Iseri
M
,
Gelenli
E
,
Yardimoglu
M
,
Yazir
Y
,
Ulubil
SA
, et al
.
Effect of intratympanic dexamethasone, memantine and piracetam on cellular apoptosis due to cisplatin ototoxicity
.
J Laryngol Otol
.
2012
;
126
(
11
):
1091
6
.
32.
Pavlidis
P
,
Maurer
J
,
Apostolidou
E
,
Kekes
G
,
Kouvelas
D
.
Memantineʼs action against aminoglycoside-induced ototoxicity
.
Eur Arch Otorhinolaryngol
.
2014
;
271
(
6
):
1491
6
.
33.
Bieńkowski
P
,
Scińska
A
,
Kostowski
W
,
Koroś
E
,
Kukwa
A
.
Ototoxic mechanism of aminoglycoside antibiotics--role of glutaminergic NMDA receptors
.
Pol Merkur Lekarski
.
2000
;
9
(
52
):
713
5
.
34.
Choi
SJ
,
Lee
SJ
,
Lee
D
,
Im
GJ
,
Jung
HH
,
Lee
S-U
, et al
.
Protective effect of memantine on cisplatin-induced ototoxicity: an in vitro study
.
Otol Neurotol
.
2024
;
45
(
9
):
998
1005
.
35.
Rybak
LP
,
Whitworth
C
,
Somani
S
.
Application of antioxidants and other agents to prevent cisplatin ototoxicity
.
Laryngoscope
.
1999
;
109
(
11
):
1740
4
.
36.
Kaur
T
,
Zamani
D
,
Tong
L
,
Rubel
EW
,
Ohlemiller
KK
,
Hirose
K
, et al
.
Fractalkine signaling regulates macrophage recruitment into the cochlea and promotes the survival of spiral ganglion neurons after selective hair cell lesion
.
J Neurosci
.
2015
;
35
(
45
):
15050
61
.
37.
Karasawa
T
,
Steyger
PS
.
An integrated view of cisplatin-induced nephrotoxicity and ototoxicity
.
Toxicol Lett
.
2015
;
237
(
3
):
219
27
.
38.
Fornasari
E
,
Marinelli
L
,
Di Stefano
A
,
Eusepi
P
,
Turkez
H
,
Fulle
S
, et al
.
Synthesis and antioxidant properties of novel memantine derivatives
.
Cent Nerv Syst Agents Med Chem
.
2017
;
17
(
2
):
123
8
.
39.
Stankova
IG
,
Stoilkova
AI
,
Chayrov
RL
,
Tsvetanova
ER
,
Georgieva
AP
,
Alexandrova
AV
.
In vitro antioxidant activity of memantine derivatives containing amino acids
.
Pharm Chem J
.
2020
;
54
(
3
):
268
72
.
40.
Saidia
AR
,
François
F
,
Casas
F
,
Mechaly
I
,
Venteo
S
,
Veechi
JT
, et al
.
Oxidative stress plays an important role in glutamatergic excitotoxicity-induced cochlear synaptopathy: implication for therapeutic molecules screening
.
Antioxidants
.
2024
;
13
(
2
):
149
.
41.
Prasad
KN
,
Bondy
SC
.
Increased oxidative stress, inflammation, and glutamate: potential preventive and therapeutic targets for hearing disorders
.
Mech Ageing Dev
.
2020
;
185
:
111191
.
42.
van Ruijven
MW
,
de Groot
JCMJ
,
Klis
SFL
,
Smoorenburg
GF
.
The cochlear targets of cisplatin: an electrophysiological and morphological time-sequence study
.
Hear Res
.
2005
;
205
(
1–2
):
241
8
.
43.
van Ruijven
MWM
,
de Groot
JCMJ
,
Smoorenburg
GF
.
Time sequence of degeneration pattern in the Guinea pig cochlea during cisplatin administration. A quantitative histological study
.
Hear Res
.
2004
;
197
(
1–2
):
44
54
.
44.
Ocho
S
,
Iwasaki
S
,
Umemura
K
,
Hoshino
T
.
A new model for investigating hair cell degeneration in the Guinea pig following damage of the stria vascularis using a photochemical reaction
.
Eur Arch Otorhinolaryngol
.
2000
;
257
(
4
):
182
7
.
45.
Thomas
JP
,
Lautermann
J
,
Liedert
B
,
Seiler
F
,
Thomale
J
.
High accumulation of platinum-DNA adducts in strialmarginal cells of the cochlea is an early event in cisplatin but not carboplatin ototoxicity
.
Mol Pharmacol
.
2006
;
70
(
1
):
23
9
.
46.
Salih
NA
,
Al-Baggou
BK
.
Effect of memantine hydrochloride on cisplatin-induced toxicity with special reference to renal alterations in mice
.
Int J Pharm
.
2019
;
15
(
2
):
189
99
.
You do not currently have access to this content.