Introduction: During postoperative implant control, we observed extraordinary peaks in transimpedance measurements. While searching for a possible reason, it appeared that they might correlate with scalar dislocations. Methods: In this retrospective case series, six adult CI patients who underwent transimpedance measurements and postoperative imaging were analyzed. Intra- and postoperative transimpedance measurements were visual inspected. The intracochlear position of electrodes was radiologically identified. Results: From 6 patients with transimpedance matrices showing an extraordinary peak in the off-diagonal area, five electrode arrays showed no correct scalar localization in the scala tympani, and one had a correct scalar localization in the scala tympani. Conclusions: A peaking transimpedance might be a marker for scalar dislocation in CIs.

1.
Sampaio
ALL
,
Araújo
MFS
,
Oliveira
CACP
.
New criteria of indication and selection of patients to cochlear implant
.
Int J Otolaryngol
.
2011
;
2011
:
573968
.
2.
Dazert
S
,
Thomas
JP
,
Loth
A
,
Zahnert
T
,
Stöver
T
.
Cochlear implantation
.
Dtsch Arztebl Int
.
2020
;
117
(
41
):
690
700
.
3.
van de Heyning
P
,
Vermeire
K
,
Diebl
M
,
Nopp
P
,
Anderson
I
,
De Ridder
D
.
Incapacitating unilateral tinnitus in single-sided deafness treated by cochlear implantation
.
Ann Otol Rhinol Laryngol
.
2008
;
117
(
9
):
645
52
.
4.
Probst
R
.
Kochleaimplantation bei einseitiger Taubheit
.
HNO
.
2008
;
56
(
9
):
886
8
.
5.
Vermeire
K
,
van de Heyning
P
.
Binaural hearing after cochlear implantation in subjects with unilateral sensorineural deafness and tinnitus
.
Audiol Neurootol
.
2009
;
14
(
3
):
163
71
.
6.
James
CJ
,
Fraysse
B
,
Deguine
O
,
Lenarz
T
,
Mawman
D
,
Ramos
A
, et al
.
Combined electroacoustic stimulation in conventional candidates for cochlear implantation
.
Audiol Neurotol
.
2006
;
11
(
Suppl 1
):
57
62
.
7.
Talbot
KN
,
Hartley
DEH
.
Combined electro-acoustic stimulation: a beneficial union
.
Clin Otolaryngol
.
2008
;
33
(
6
):
536
45
.
8.
Lehnhardt
E
.
Intrakochleäre Plazierung der Cochlear-Implant-Elektroden in soft surgery technique
.
HNO
.
1993
;
41
(
7
):
356
9
.
9.
Dhanasingh
A
,
Jolly
C
.
Review on cochlear implant electrode array tip fold-over and scalar deviation
.
J Otol
.
2019
;
14
(
3
):
94
100
.
10.
Wanna
GB
,
Noble
JH
,
Carlson
ML
,
Gifford
RH
,
Dietrich
MS
,
Haynes
DS
, et al
.
Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes
.
Laryngoscope
.
2014
;
124 Suppl 6
(
0 6
):
S1
7
.
11.
Boyer
E
,
Karkas
A
,
Attye
A
,
Lefournier
V
,
Escude
B
,
Schmerber
S
.
Scalar localization by cone-beam computed tomography of cochlear implant carriers: a comparative study between straight and periomodiolar precurved electrode arrays
.
Otol Neurotol
.
2015
;
36
(
3
):
422
9
.
12.
Mittmann
P
,
Todt
I
,
Ernst
A
,
Rademacher
G
,
Mutze
S
,
Göricke
S
, et al
.
Radiological and NRT-ratio-based estimation of slim straight cochlear implant electrode positions: a multicenter study
.
Ann Otol Rhinol Laryngol
.
2017
;
126
(
1
):
73
8
.
13.
O’Connell
BP
,
Cakir
A
,
Hunter
JB
,
Francis
DO
,
Noble
JH
,
Labadie
RF
, et al
.
Electrode location and angular insertion depth are predictors of audiologic outcomes in cochlear implantation
.
Otol Neurotol
.
2016
;
37
(
8
):
1016
23
.
14.
Koka
K
,
Riggs
WJ
,
Dwyer
R
,
Holder
JT
,
Noble
JH
,
Dawant
BM
, et al
.
Intra-cochlear electrocochleography during cochear implant electrode insertion is predictive of final scalar location
.
Otol Neurotol
.
2018
;
39
(
8
):
e654
9
.
15.
Aschendorff
A
,
Kromeier
J
,
Klenzner
T
,
Laszig
R
.
Quality control after insertion of the nucleus contour and contour advance electrode in adults
.
Ear Hear
.
2007
;
28
(
2 Suppl l
):
75S
9S
.
16.
Shaul
C
,
Dragovic
AS
,
Stringer
AK
,
O’Leary
SJ
,
Briggs
RJ
.
Scalar localisation of peri-modiolar electrodes and speech perception outcomes
.
J Laryngol Otol
.
2018
;
132
(
11
):
1000
6
.
17.
Trudel
M
,
Côté
M
,
Philippon
D
,
Simonyan
D
,
Villemure-Poliquin
N
,
Bussières
R
.
Comparative impacts of scala vestibuli versus scala tympani cochlear implantation on auditory performances and programming parameters in partially ossified cochleae
.
Otol Neurotol
.
2018
;
39
:
700
6
.
18.
Cohen
LT
,
Xu
J
,
Xu
SA
,
Clark
GM
.
Improved and simplified methods for specifying positions of the electrode bands of a cochlear implant array
.
Am J Otol
.
1996
;
17
(
6
):
859
65
.
19.
Munhall
CC
,
Noble
JH
,
Dawant
B
,
Labadie
RF
.
Cochlear implant translocation: diagnosis, prevention, and clinical implications
.
Curr Otorhinolaryngol Rep
.
2022
;
10
(
4
):
337
42
.
20.
Alzhrani
F
,
Aljazeeri
I
,
Abdelsamad
Y
,
Alsanosi
A
,
Kim
AH
,
Ramos-Macias
A
, et al
.
International consensus statements on intraoperative testing for cochlear implantation surgery
.
Ear Hear
.
2024
.
45
(
6
):
1418
26
.
21.
Knörgen
M
,
Brandt
S
,
Kösling
S
.
Qualitätsvergleich digitaler 3D-fähiger Röntgenanlagen bei HNO-Fragestellungen am Schläfenbein und den Nasennebenhöhlen
.
Rofo
.
2012
;
184
(
12
):
1153
60
.
22.
Mittmann
P
,
Todt
I
,
Ernst
A
,
Rademacher
G
,
Mutze
S
,
Göricke
S
, et al
.
Electrophysiological detection of scalar changing perimodiolar cochlear electrode arrays: a long term follow-up study
.
Eur Arch Oto-Rhino-Laryngol
.
2016
;
273
(
12
):
4251
6
.
23.
Mittmann
P
,
Ernst
A
,
Todt
I
.
Intraoperative electrophysiologic variations caused by the scalar position of cochlear implant electrodes
.
Otol Neurotol
.
2015
;
36
(
6
):
1010
4
.
24.
Mittmann
P
,
Todt
I
,
Wesarg
T
,
Arndt
S
,
Ernst
A
,
Hassepass
F
.
Electrophysiological detection of intracochlear scalar changing perimodiolar cochlear implant electrodes: a blinded study
.
Otol Neurotol
.
2015
;
36
(
7
):
1166
71
.
25.
Müller
A
,
Hocke
T
,
Mir-Salim
P
.
Intraoperative findings on ECAP-measurement: normal or special case
.
Int J Audiol
.
2015
;
54
(
4
):
257
64
.
26.
Wagner
L
,
Plontke
SK
,
Fröhlich
L
,
Rahne
T
.
Reduced spread of electric field after surgical removal of intracochlear schwannoma and cochlear implantation
.
Otol Neurotol
.
2020
;
41
(
10
):
e1297
303
.
27.
Kopsch
AC
,
Rahne
T
,
Plontke
SK
,
Wagner
L
.
Influence of the spread of electric field on neural excitation in cochlear implant users: transimpedance and spread of excitation measurements
.
Hear Res
.
2022
;
424
:
108591
.
28.
Wagner
L
,
Plontke
SK
,
Rahne
T
.
An analysis of the spread of electric field within the cochlea for different devices including custom-made electrodes for subtotal cochleoectomy
.
PLoS One
.
2023
;
18
(
9
):
e0287216
.
29.
Kopsch
AC
,
Rahne
T
,
Plontke
SK
,
Wagner
L
.
Influence of the spread of the electric field on speech recognition in cochlear implant users
.
Otol Neurotol
.
2024
;
45
(
3
):
e221
7
.
30.
de Rijk
SR
,
Tam
YC
,
Carlyon
RP
,
Bance
ML
.
Detection of extracochlear electrodes in cochlear implants with electric field imaging/transimpedance measurements: a human cadaver study
.
Ear Hear
.
2020
;
41
(
5
):
1196
207
.
31.
Klabbers
TM
,
Huinck
WJ
,
Heutink
F
,
Verbist
BM
,
Mylanus
EAM
.
Transimpedance matrix (TIM) measurement for the detection of intraoperative electrode tip foldover using the slim modiolar electrode: a proof of concept study
.
Otol Neurotol
.
2021
;
42
(
2
):
e124
9
.
32.
Hans
S
,
Arweiler-Harbeck
D
,
Kaster
F
,
Ludwig
J
,
Hagedorn
E
,
Lang
S
, et al
.
Transimpedance matrix measurements reliably detect electrode tip fold-over in cochlear implantation
.
Otol Neurotol
.
2021
;
42
(
10
):
e1494
502
.
33.
Hoppe
U
,
Brademann
G
,
Stöver
T
,
Ramos de Miguel
A
,
Cowan
R
,
Manrique
M
, et al
.
Evaluation of a transimpedance matrix algorithm to detect anomalous cochlear implant electrode position
.
Audiol Neurootol
.
2022
;
27
(
5
):
347
55
.
34.
Kay-Rivest
E
,
McMenomey
SO
,
Jethanamest
D
,
Shapiro
WH
,
Friedmann
DR
,
Waltzman
SB
, et al
.
Predictive value of transimpedance matrix measurements to detect electrode tip foldover
.
Otol Neurotol
.
2022
;
43
(
9
):
1027
32
.
35.
de Rijk
SR
,
Hammond-Kenny
A
,
Tam
YC
,
Eitutis
ST
,
Garcia
C
,
Carlyon
RP
, et al
.
Detection of extracochlear electrodes using stimulation-current- induced non-stimulating electrode voltage recordings with different electrode designs
.
Otol Neurotol
.
2022
;
43
(
5
):
e548
57
.
36.
Zuniga
MG
,
Rivas
A
,
Hedley-Williams
A
,
Gifford
RH
,
Dwyer
R
,
Dawant
BM
, et al
.
Tip Fold-Over in cochlear implantation: case series
.
Otol Neurotol
.
2017
;
38
(
2
):
199
206
.
37.
Ayas
M
,
Muzaffar
J
,
Borsetto
D
,
Eitutis
S
,
Phillips
V
,
Tam
YC
, et al
.
A scoping review on the clinical effectiveness of Trans-Impedance Matrix (TIM) measurements in detecting extracochlear electrodes and tip fold overs in Cochlear Ltd devices
.
PLoS One
.
2024
;
19
(
3
):
e0299597
.
38.
Cheung
LL
,
Kong
J
,
Chu
PY
,
Sanli
H
,
Walton
J
,
Birman
CS
.
Misplaced cochlear implant electrodes outside the cochlea: a literature review and presentation of radiological and electrophysiological findings
.
Otol Neurotol
.
2022
;
43
(
5
):
567
79
.
39.
Ramos de Miguel
Á
,
Riol Sancho
D
,
Falcón-González
JC
,
Pavone
J
,
Rodríguez Herrera
L
,
Borkoski Barreiro
S
, et al
.
Assessing the placement of the cochlear slim perimodiolar electrode array by trans impedance matrix analysis: a temporal bone study
.
J Clin Med
.
2022
;
11
(
14
):
3930
.
40.
Aebischer
P
,
Meyer
S
,
Caversaccio
M
,
Wimmer
W
.
Intraoperative impedance-based estimation of cochlear implant electrode array insertion depth
.
IEEE Trans Biomed Eng
.
2021
;
68
(
2
):
545
55
.
41.
Schraivogel
S
,
Aebischer
P
,
Wagner
F
,
Weder
S
,
Mantokoudis
G
,
Caversaccio
M
, et al
.
Postoperative impedance-based estimation of cochlear implant electrode insertion depth
.
Ear Hear
.
2023
;
44
(
6
):
1379
88
.
42.
Zhang
L
,
Schmidt
FH
,
Oberhoffner
T
,
Ehrt
K
,
Cantré
D
,
Großmann
W
, et al
.
Transimpedance matrix can Be used to estimate electrode positions intraoperatively and to monitor their positional changes postoperatively in cochlear implant patients
.
Otol Neurotol
.
2024
;
45
(
4
):
e289
96
.
43.
Dong
Y
,
Briaire
JJ
,
Siebrecht
M
,
Stronks
HC
,
Frijns
JHM
.
Detection of translocation of cochlear implant electrode arrays by intracochlear impedance measurements
.
Ear Hear
.
2021
;
42
(
5
):
1397
404
.
44.
3D Slicer
.
3D Slicer image computing platform
.
2024
. Available from: https://www.slicer.org/ (accessed May 16, 2024).
45.
Fedorov
A
,
Beichel
R
,
Kalpathy-Cramer
J
,
Finet
J
,
Fillion-Robin
JC
,
Pujol
S
, et al
.
3D slicer as an image computing platform for the quantitative imaging network
.
Magn Reson Imaging
.
2012
;
30
(
9
):
1323
41
.
46.
Berenstein
CK
,
Vanpoucke
FJ
,
Mulder
JJS
,
Mens
LHM
.
Electrical field imaging as a means to predict the loudness of monopolar and tripolar stimuli in cochlear implant patients
.
Hear Res
.
2010
;
270
(
1–2
):
28
38
.
47.
Kral
A
,
Aplin
F
,
Maier
H
.
Prostheses for the brain: principles and applications of neuroprostheses
.
Elsevier Academic Press
;
2021
. [Place of publication not identified].
You do not currently have access to this content.