Introduction: Preservation of residual hearing, mainly the low frequencies, is the current main objective of cochlear implantation. New electrode arrays and the development of minimally invasive surgery have allowed electroacoustic stimulation. Over the past several years, robotic-assisted cochlear implant surgery aimed to improve the insertion process while respecting inner ear structures. However, the introduction of a foreign body inside the cochlea can lead to the development of fibrous tissue around the electrode array, or even induce osteogenesis. These histological changes disrupt the parameters of the cochlear implant, resulting in elevated impedance. In addition, long-term auditory performance can be affected, with a deterioration in word comprehension. We evaluated the potential impact of RobOtol® on impedance changes over time, leading to potentially positive functional outcomes. Methods: Cochlear implant surgery with a round window approach was performed under general anesthesia. Fifteen Med-El Flex24 electrode arrays were inserted manually and 24 using RobOtol®. All subjects underwent pure-tone audiometry tests before the surgery and at regular intervals up to 1 year after the surgery. Based on the pure-tone average at the low frequencies from 250 to 1,000 Hz, we divided the patients according to the degree of auditory preservation (full preservation ≤15 dB, partial preservation 15 dB–30 dB, significant loss >30 dB). These different groups were compared in terms of impedance changes and auditory performance, specifically word recognition score. Results: We found proportionally fewer patients who experienced significant low-frequency hearing loss after robotic insertion (53.33% in the manual group compared to 41.67% in the robot-assisted insertion group). Impedance changes at the apex of the electrode array, especially at the first electrode (p = 0.04), after robotic surgery, with less overall variability, a continuous decreasing trend without secondary elevation, and lower values in cases of complete residual hearing preservation (for the three first electrodes: p = 0.017, p = 0.04, p = 0.045). The speech intelligibility amelioration over time showed favorable evolution in patients with complete residual hearing preservation regardless of the insertion method. However, in the absence of auditory preservation, the positive evolution continued more than 6 months after robotic surgery but stagnated after manual insertion (difference at 1 year, p = 0.038; median auditory capacity index 83% vs. 57%). Conclusion: Atraumatic electrode array insertion with consistent, slow speed and the assistance of RobOtol® minimizes disturbances in the delicate neurosensory structures of the inner ear and leads to better auditory performance.

1.
Woodson
EA
,
Reiss
LAJ
,
Turner
CW
,
Gfeller
K
,
Gantz
BJ
.
The Hybrid cochlear implant: a review
.
Adv Oto-Rhino-Laryngol
.
2010
;
67
:
125
34
.
2.
Jia
H
,
Venail
F
,
Piron
J-P
,
Batrel
C
,
Pelliccia
P
,
Artières
F
, et al
.
Effect of surgical technique on electrode impedance after cochlear implantation
.
Ann Otol Rhinol Laryngol
.
2011
;
120
(
8
):
529
34
.
3.
Van de Heyning
P
,
Roland
P
,
Lassaletta
L
,
Agrawal
S
,
Atlas
M
,
Baumgartner
WD
, et al
.
Suitable electrode choice for robotic-assisted cochlear implant surgery: a systematic literature review of manual electrode insertion adverse events
.
Front Surg
.
2022
;
9
:
823219
.
4.
Torres
R
,
Jia
H
,
Drouillard
M
,
Bensimon
JL
,
Sterkers
O
,
Ferrary
E
, et al
.
An optimized robot‐based technique for cochlear implantation to reduce array insertion trauma
.
Otolaryngol Neck Surg
.
2018
;
159
(
5
):
900
7
.
5.
Jia
H
,
Pan
J
,
Gu
W
,
Tan
H
,
Chen
Y
,
Zhang
Z
, et al
.
Robot-assisted electrode array insertion becomes available in pediatric cochlear implant recipients: first report and an intra-individual study
.
Front Surg
.
2021
;
8
:
695728
.
6.
Barriat
S
,
Peigneux
N
,
Duran
U
,
Camby
S
,
Lefebvre
PP
.
The use of a robot to insert an electrode array of cochlear implants in the cochlea: a feasibility study and preliminary results
.
Audiol Neurotol
.
2021
;
26
(
5
):
361
7
.
7.
Kontorinis
G
,
Lenarz
T
,
Stöver
T
,
Paasche
G
.
Impact of the insertion speed of cochlear implant electrodes on the insertion forces
.
Otol Neurotol
.
2011
;
32
(
4
):
565
70
.
8.
Rajan
GP
,
Kontorinis
G
,
Kuthubutheen
J
.
The effects of insertion speed on inner ear function during cochlear implantation: a comparison study
.
Audiol Neurotol
.
2013
;
18
(
1
):
17
22
.
9.
Nguyen
S
,
Cloutier
F
,
Philippon
D
,
Côté
M
,
Bussières
R
,
Backous
DD
.
Outcomes review of modern hearing preservation technique in cochlear implant
.
Auris Nasus Larynx
.
2016
;
43
(
5
):
485
8
.
10.
Santa Maria
PL
,
Gluth
MB
,
Yuan
Y
,
Atlas
MD
,
Blevins
NH
.
Hearing preservation surgery for cochlear implantation: a meta-analysis
.
Otol Neurotol
.
2014
;
35
(
10
):
e256
69
.
11.
Causon
A
,
Verschuur
C
,
Newman
TA
.
A retrospective analysis of the contribution of reported factors in cochlear implantation on hearing preservation outcomes
.
Otol Neurotol
.
2015
;
36
(
7
):
1137
45
.
12.
Foggia
MJ
,
Quevedo
RV
,
Hansen
MR
.
Intracochlear fibrosis and the foreign body response to cochlear implant biomaterials
.
Laryngoscope Investig Otolaryngol
.
2019
;
4
(
6
):
678
83
.
13.
Choi
C-H
,
Oghalai
JS
.
Predicting the effect of post-implant cochlear fibrosis on residual hearing
.
Hear Res
.
2005
;
205
(
1–2
):
193
200
.
14.
Kamakura
T
,
Nadol
JB
Jr
.
Correlation between word recognition score and intracochlear new bone and fibrous tissue after cochlear implantation in the human
.
Hear Res
.
2016
;
339
:
132
41
.
15.
Busby
PA
,
Plant
KL
,
Whitford
LA
.
Electrode impedance in adults and children using the Nucleus 24 cochlear implant system
.
Cochlear Implants Int
.
2002
;
3
(
2
):
87
103
.
16.
Wilk
M
,
Hessler
R
,
Mugridge
K
,
Jolly
C
,
Fehr
M
,
Lenarz
T
, et al
.
Impedance changes and fibrous tissue growth after cochlear implantation are correlated and can Be reduced using a dexamethasone eluting electrode
.
PLoS One
.
2016
;
11
(
2
):
e0147552
.
17.
Spitzer
ER
,
Hughes
ML
.
Effect of stimulus polarity on physiological spread of excitation in cochlear implants
.
J Am Acad Audiol
.
2017
;
28
(
9
):
786
98
.
18.
Skarzynski
H
,
van de Heyning
P
,
Agrawal
S
,
Arauz
SL
,
Atlas
M
,
Baumgartner
W
, et al
.
Towards a consensus on a hearing preservation classification system
.
Acta Otolaryngol Suppl
.
2013
;
133
(
564
):
3
13
.
19.
O’Connell
BP
,
Hunter
JB
,
Haynes
DS
,
Holder
JT
,
Dedmon
MM
,
Noble
JH
, et al
.
Insertion depth impacts speech perception and hearing preservation for lateral wall electrodes
.
Laryngoscope
.
2017
;
127
(
10
):
2352
7
.
20.
Schaefer
S
,
Sahwan
M
,
Metryka
A
,
Kluk
K
,
Bruce
IA
.
The benefits of preserving residual hearing following cochlear implantation: a systematic review
.
Int J Audiol
.
2021
;
60
(
8
):
561
77
.
21.
Aschendorff
A
,
Kromeier
J
,
Klenzner
T
,
Laszig
R
.
Quality control after insertion of the nucleus contour and contour advance electrode in adults
.
Ear Hear
.
2007
;
28
(
2 Suppl
):
75S
9S
.
22.
Finley
CC
,
Holden
TA
,
Holden
LK
,
Whiting
BR
,
Chole
RA
,
Neely
GJ
, et al
.
Role of electrode placement as a contributor to variability in cochlear implant outcomes
.
Otol Neurotol
.
2008
;
29
(
7
):
920
8
.
23.
Snels
C
,
IntHout
J
,
Mylanus
E
,
Huinck
W
,
Dhooge
I
.
Hearing preservation in cochlear implant surgery: a meta-analysis
.
Otol Neurotol
.
2019
;
40
(
2
):
145
53
.
24.
Ketterer
MC
,
Aschendorff
A
,
Arndt
S
,
Speck
I
,
Rauch
AK
,
Beck
R
, et al
.
Radiological evaluation of a new straight electrode array compared to its precursors
.
Eur Arch Oto-Rhino-Laryngol
.
2021
;
278
(
10
):
3707
14
.
25.
Miroir
M
,
Nguyen
Y
,
Szewczyk
J
,
Sterkers
O
,
Bozorg Grayeli
A
.
Design, kinematic optimization, and evaluation of a teleoperated system for middle ear microsurgery
.
Sci World J
.
2012
;
2012
:
907372
.
26.
Drouillard
M
,
Torres
R
,
Mamelle
E
,
De Seta
D
,
Sterkers
O
,
Ferrary
E
, et al
.
Influence of electrode array stiffness and diameter on hearing in cochlear implanted Guinea pig
.
PLoS One
.
2017
;
12
(
8
):
e0183674
.
27.
Hughes
ML
,
Vander Werff
KR
,
Brown
CJ
,
Abbas
PJ
,
Kelsay
DM
,
Teagle
HF
, et al
.
A longitudinal study of electrode impedance, the electrically evoked compound action potential, and behavioral measures in nucleus 24 cochlear implant users
.
Ear Hear
.
2001
;
22
(
6
):
471
86
.
You do not currently have access to this content.