Introduction: Cochlear implant (CI) users differ greatly in their rehabilitation outcomes, including speech understanding in noise. This variability may be related to brain changes associated with intact senses recruiting cortical areas from stimulation-deprived senses. Numerous studies have demonstrated such cross-modal reorganization in individuals with untreated hearing loss. How it is affected by regular use of hearing devices remains unclear, however. To shed light on this, the current study measured cortical responses reflecting comprehension abilities in experienced CI users and normal-hearing controls. Methods: Using multichannel electroencephalography, we tested CI users who had used their devices for at least 12 months and closely matched controls (N = 2 × 13). Cortical responses reflecting comprehension abilities – the N400 and late positive complex (LPC) components – were evoked using congruent and incongruent digit-triplet stimuli. The participants’ task was to assess digit-triplet congruency by means of timed button presses. All measurements were performed in speech-shaped noise 15 dB above individually measured speech recognition thresholds. Three stimulus presentation modes were used: auditory-only, visual-only, and visual-then-auditory. Results: The analyses revealed no group differences in the N400 and LPC responses. In terms of response times, the CI users were slower and differentially affected by the three stimulus presentation modes relative to the controls. Conclusion: Compared to normal-hearing controls, experienced CI users may need more time to comprehend speech in noise. Response times can serve as a proxy for speech comprehension by CI users.

1.
Krueger
B
,
Joseph
G
,
Rost
U
,
Strauss-Schier
A
,
Lenarz
T
,
Buechner
A
.
Performance groups in adult cochlear implant users: speech perception results from 1984 until today
.
Otol Neurotol
.
2008
;
29
(
4
):
509
12
.
2.
Wilson
BS
,
Dorman
MF
.
Cochlear implants: a remarkable past and a brilliant future
.
Hear Res
.
2008
;
242
(
1–2
):
3
21
.
3.
Zeng
FG
.
Advances in auditory prostheses
. In:
Zeng
FG
,
Popper
A
,
Fay
R
, editors.
Auditory prostheses. Springer handbook of auditory research
.
New York, NY
:
Springer
;
2011
.
Vol. 39
; p.
1
11
.
4.
Carlyon
RP
,
Goehring
T
.
Cochlear implant research and development in the twenty-first century: a critical update
.
J Assoc Res Otolaryngol
.
2021
;
22
(
5
):
481
508
.
5.
Goldwyn
JH
,
Bierer
SM
,
Bierer
JA
.
Modeling the electrode–neuron interface of cochlear implants: effects of neural survival, electrode placement, and the partial tripolar configuration
.
Hear Res
.
2010
;
268
(
1–2
):
93
104
.
6.
Petersen
NK
,
Jørgensen
AW
,
Ovesen
T
.
Prevalence of various etiologies of hearing loss among cochlear implant recipients: systematic review and meta-analysis
.
Int J Audiol
.
2015
;
54
(
12
):
924
32
.
7.
Lazard
DS
,
Vincent
C
,
Venail
F
,
Van de Heyning
P
,
Truy
E
,
Sterkers
O
, et al
.
Pre-per- and postoperative factors affecting performance of postlinguistically deaf adults using cochlear implants: a new conceptual model over time
.
PLoS One
.
2012
;
7
(
11
):
e48739
.
8.
Mosnier
I
,
Bebear
JP
,
Marx
M
,
Fraysse
B
,
Truy
E
,
Lina-Granade
G
, et al
.
Predictive factors of cochlear implant outcomes in the elderly
.
Audiol Neurootol
.
2014
;
19
(
Suppl 1
):
15
20
.
9.
Blamey
P
,
Artieres
F
,
Başkent
D
,
Bergeron
F
,
Beynon
A
,
Burke
E
, et al
.
Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants: an update with 2251 patients
.
Audiol Neurootol
.
2013
;
18
(
1
):
36
47
.
10.
Stropahl
M
,
Chen
LC
,
Debener
S
.
Cortical reorganization in postlingually deaf cochlear implant users: intra-modal and cross-modal considerations
.
Hear Res
.
2017
;
343
:
128
37
.
11.
Bavelier
D
,
Neville
HJ
.
Cross-modal plasticity: where and how
.
Nat Rev Neurosci
.
2002
;
3
(
6
):
443
52
.
12.
Doucet
ME
,
Bergeron
F
,
Lassonde
M
,
Ferron
P
,
Lepore
F
.
Cross-modal reorganization and speech perception in cochlear implant users
.
Brain
.
2006
;
129
(
Pt 12
):
3376
83
.
13.
Bilecen
D
,
Seifritz
E
,
Radü
EW
,
Schmid
N
,
Wetzel
S
,
Probst
R
, et al
.
Cortical reorganization after acute unilateral hearing loss traced by fMRI
.
Neurology
.
2000
;
54
(
3
):
765
7
.
14.
Campbell
J
,
Sharma
A
,
Compensatory changes in cortical resource allocation in adults with hearing loss
.
Front Syst Neurosci
.
2013
;
7
:
71
.
15.
Cardon
G
,
Sharma
A
.
Somatosensory cross-modal reorganization in adults with age-related, early-stage hearing loss
.
Front Hum Neurosci
.
2018
;
12
:
172
.
16.
Gilley
PM
,
Sharma
A
,
Dorman
MF
.
Cortical reorganization in children with cochlear implants
.
Brain Res
.
2008
;
1239
:
56
65
.
17.
Kral
A
,
Sharma
A
.
Developmental neuroplasticity after cochlear implantation
.
Trends Neurosci
.
2012
;
35
(
2
):
111
22
.
18.
Stropahl
M
,
Debener
S
.
Auditory cross-modal reorganization in cochlear implant users indicates audio-visual integration
.
Neuroimage Clin
.
2017
;
16
:
514
23
.
19.
Chen
LC
,
Sandmann
P
,
Thorne
JD
,
Bleichner
MG
,
Debener
S
.
Cross-modal functional reorganization of visual and auditory cortex in adult cochlear implant users identified with fNIRS
.
Neural Plast
.
2016
;
2016
:
4382656
.
20.
Lee
HJ
,
Smieja
D
,
Polonenko
MJ
,
Cushing
SL
,
Papsin
B
,
Gordon
KA
.
Consistent and chronic cochlear implant use partially reverses cortical effects of single sided deafness in children
.
Sci Rep
.
2020
;
10
(
1
):
21526
.
21.
Sandmann
P
,
Dillier
N
,
Eichele
T
,
Meyer
M
,
Kegel
A
,
Pascual-Marqui
RD
, et al
.
Visual activation of auditory cortex reflects maladaptive plasticity in cochlear implant users
.
Brain
.
2012
;
135
(
Pt 2
):
555
68
.
22.
Niedeggen
M
,
Rösler
F
.
N400 effects reflect activation spread during retrieval of arithmetic facts
.
Psychol Sci
.
1999
;
10
(
3
):
271
6
.
23.
Kutas
M
,
Federmeier
KD
.
Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP)
.
Annu Rev Psychol
.
2011
;
62
:
621
47
.
24.
Yang
H
,
Laforge
G
,
Stojanoski
B
,
Nichols
ES
,
McRae
K
,
Köhler
S
.
Late positive complex in event-related potentials tracks memory signals when they are decision relevant
.
Sci Rep
.
2019
;
9
(
1
):
9469
.
25.
Hahne
A
,
Wolf
A
,
Müller
J
,
Mürbe
D
,
Friederici
AD
.
Sentence comprehension in proficient adult cochlear implant users: on the vulnerability of syntax
.
Lang Cognit Process
.
2012
;
27
(
7–8
):
1192
204
.
26.
Kessler
M
,
Schierholz
I
,
Mamach
M
,
Wilke
F
,
Hahne
A
,
Büchner
A
, et al
.
Combined brain-perfusion SPECT and EEG measurements suggest distinct strategies for speech comprehension in CI users with higher and lower performance
.
Front Neurosci
.
2020
;
14
:
787
.
27.
Finke
M
,
Büchner
A
,
Ruigendijk
E
,
Meyer
M
,
Sandmann
P
.
On the relationship between auditory cognition and speech intelligibility in cochlear implant users: an ERP study
.
Neuropsychologia
.
2016
;
87
:
169
81
.
28.
Deshpande
P
,
Brandt
C
,
Debener
S
,
Neher
T
.
Comparing clinically applicable behavioral and electrophysiological measures of speech detection, discrimination, and comprehension
.
Trends Hear
.
2022
;
26
:
23312165221139733
.
29.
Deshpande
P
,
Brandt
C
,
Debener
S
,
Neher
T
.
Does experience with hearing aid amplification influence electrophysiological measures of speech comprehension
.
Int J Audiol
.
2023
:
1
10
.
30.
Veale
JF
.
Edinburgh handedness inventory – short form: a revised version based on confirmatory factor analysis
.
Laterality
.
2014
;
19
(
2
):
164
77
.
31.
Hobson
J
.
The montreal cognitive assessment (MoCA)
.
Occup Med
.
2015
;
65
(
9
):
764
5
.
32.
Elberling
C
,
Ludvigsen
C
,
Lyregaard
PE
.
Dantale: a new danish speech material
.
Scand Audiol
.
1989
;
18
(
3
):
169
75
.
33.
Delorme
A
,
Makeig
S
.
EEGLAB: an open-source toolbox for analysis of single-trial EEG dynamics including independent component analysis
.
J Neurosci Methods
.
2004
;
134
(
1
):
9
21
.
34.
Duncan
CC
,
Barry
RJ
,
Connolly
JF
,
Fischer
C
,
Michie
PT
,
Näätänen
R
, et al
.
Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400
.
Clin Neurophysiol
.
2009
;
120
(
11
):
1883
908
.
35.
Habicht
J
,
Finke
M
,
Neher
T
.
Auditory acclimatization to bilateral hearing aids: effects on sentence-in-noise processing times and speech-evoked potentials
.
Ear Hear
.
2018
;
39
(
1
):
161
71
.
36.
Voola
M
,
Wedekind
A
,
Nguyen
AT
,
Marinovic
W
,
Rajan
G
,
Tavora-Vieira
D
.
Event-related potentials of single-sided deaf cochlear implant users: using a semantic oddball paradigm in noise
.
Audiol Neurootol
.
2023
;
28
(
4
):
280
93
.
37.
Kallioinen
P
,
Olofsson
J
,
Nakeva von Mentzer
C
,
Lindgren
M
,
Ors
M
,
Sahlén
BS
, et al
.
Semantic processing in deaf and hard-of-hearing children: large N400 mismatch effects in brain responses, despite poor semantic ability
.
Front Psychol
.
2016
;
7
:
1146
.
38.
Bell
N
,
Angwin
AJ
,
Arnott
WL
,
Wilson
WJ
.
Semantic processing in children with cochlear implants: evidence from event-related potentials
.
J Clin Exp Neuropsychol
.
2019
;
41
(
6
):
576
90
.
39.
McClannahan
KS
,
Backer
KC
,
Tremblay
KL
.
Auditory evoked responses in older adults with normal hearing, untreated, and treated age-related hearing loss
.
Ear Hear
.
2019
;
40
(
5
):
1106
16
.
40.
Pawlowski
GM
,
Ghosh-Hajra
S
,
Fickling
SD
,
Liu
CC
,
Song
X
,
Robinovitch
S
, et al
.
Brain vital signs: expanding from the auditory to visual modality
.
Front Neurosci
.
2018
;
12
:
968
.
41.
Besser
J
,
Koelewijn
T
,
Zekveld
AA
,
Kramer
SE
,
Festen
JM
.
How linguistic closure and verbal working memory relate to speech recognition in noise: a review
.
Trends Amplif
.
2013
;
17
(
2
):
75
93
.
You do not currently have access to this content.