Introduction: Optimal cochlear implant (CI) outcomes are due to, at least in part, appropriate device programming. Objective measures, such as electrically evoked stapedial reflex thresholds (ESRTs), can be used to more accurately set programming levels. However, underlying factors that contribute to ESRT levels are not well understood. The objective of the current study was to analyze how demographic variables of patient sex and age, along with CI electrode location, influence ESRTs in adult CI recipients. Methods: A single institution retrospective review was performed. Electronic medical records, CI programming records, and clinic database of postoperative computerized tomography were reviewed to gather information regarding patient demographics, ESRTs, and electrode array metrics including medial-lateral distance and scalar location. Linear mixed models were constructed to determine how demographic variables and electrode position influence ESRTs recorded in 138 adult CI recipients. Results: ESRTs were significantly affected by recipient age, with older listeners demonstrating higher ESRT levels. On average, males had higher ESRT levels when compared to females. In a subset of the study sample, ESRT levels increased with increasing medial-lateral distance; however, there was not a statistically significant effect of electrode type (lateral/straight arrays compared to perimodiolar arrays). ESRTs were not affected by scalar location. Discussion/Conclusions: The results suggest that key demographic and electrode position characteristics influence the level of ESRTs in adult CI recipients. While ESRTs are widely used to assist with CI programming, underlying factors are not well understood. The significant factors of aging and sex could be due to middle ear mechanics or neural health differences. However, further data are needed to better understand these associations.

1.
Pitt
C
,
Muñoz
K
,
Schwartz
S
,
Kunz
JM
.
The long-term stability of the electrical stapedial reflex threshold
.
Otol Neurotol
.
2021
;
42
(
1
):
188
96
. .
2.
Eisen
MD
,
Franck
KH
.
Electrically evoked compound action potential amplitude growth functions and HiResolution programming levels in pediatric CII implant subjects
.
Ear Hear
.
2004
;
25
(
6
):
528
38
. .
3.
Gordon
KA
,
Papsin
BC
,
Harrison
RV
.
Toward a battery of behavioral and objective measures to achieve optimal cochlear implant stimulation levels in children
.
Ear Hear
.
2004
;
25
(
5
):
447
63
. .
4.
Brickley
GJ
,
Conway
MJ
,
Craddock
LC
.
Initial results of neural response telemetry recording of electrical compound action potentials from the United Kingdom
.
Ann Otol Rhinol Laryngol Suppl
.
2000
;
185
(
12_Suppl l
):
9
12
. .
5.
Franck
KH
,
Norton
SJ
.
Estimation of psychophysical levels using the electrically evoked compound action potential measured with the neural response telemetry capabilities of Cochlear Corporation’s CI24M device
.
Ear Hear
.
2001
;
22
(
4
):
289
99
. .
6.
de Vos
JJ
,
Biesheuvel
JD
,
Briaire
JJ
,
Boot
PS
,
van Gendt
MJ
,
Dekkers
OM
, et al
.
Use of electrically evoked compound action potentials for cochlear implant fitting: a systematic review
.
Ear Hear
.
2018
;
39
(
3
):
401
11
. .
7.
Kosaner
J
,
Spitzer
P
,
Bayguzina
S
,
Gultekin
M
,
Behar
LA
.
Comparing eSRT and eCAP measurements in pediatric MED-EL cochlear implant users
.
Cochlear Implants Int
.
2018
;
19
(
3
):
153
61
. .
8.
Kosaner
J
, et al
.
The use of ESRT in fitting children with cochlear implants
.
J Int Adv Otology
.
2009
;
5
(
1
).
9.
Spivak
LG
,
Chute
PM
.
The relationship between electrical acoustic reflex thresholds and behavioral comfort levels in children and adult cochlear implant patients
.
Ear Hear
.
1994
;
15
(
2
):
184
92
. .
10.
Hodges
AV
,
Balkany
TJ
,
Ruth
RA
,
Lambert
PR
,
Dolan-Ash
S
,
Schloffman
JJ
.
Electrical middle ear muscle reflex: use in cochlear implant programming
.
Otolaryngol Head Neck Surg
.
1997
;
117
(
3 Pt 1
):
255
61
. .
11.
Walkowiak
A
,
Lorens
A
,
Kostek
B
,
Skarzynski
H
,
Polak
M
.
ESRT, ART, and MCL correlations in experienced paediatric cochlear implant users
.
Cochlear Implants Int
.
2010
;
11
(
Suppl 1
):
482
4
. .
12.
Stephan
K
,
Welzl-Muller
K
.
Post-operative stapedius reflex tests with simultaneous loudness scaling in patients supplied with cochlear implants
.
Audiology
.
2000
;
39
(
1
):
13
8
. .
13.
Kosaner
J
, et al
.
Electrically elicited Stapedius reflexes in bilateral cochlear implant users
.
J Hear Sci
.
2018
;
8
(
2
).
14.
Fowler
CG
,
Chiasson
KB
,
Hart
DB
,
Beasley
TM
,
Kemnitz
J
,
Weindruch
R
.
Tympanometry in rhesus monkeys: effects of aging and caloric restriction
.
Int J Audiol
.
2008
;
47
(
4
):
209
14
. .
15.
Bresnihan
M
,
Norman
G
,
Scott
F
,
Viani
L
.
Measurement of comfort levels by means of electrical stapedial reflex in children
.
Arch Otolaryngol Head Neck Surg
.
2001
;
127
(
8
):
963
6
. .
16.
Stuart
A
,
Tomaszewski
EK
,
Engelhardt
BM
.
An examination of asymmetry in adult tympanometric measures
.
J Am Acad Audiol
.
2021
;
32
(
4
):
229
34
. .
17.
Wiley
TL
,
Cruickshanks
KJ
,
Nondahl
DM
,
Tweed
TS
,
Klein
R
,
Klein
BE
.
Tympanometric measures in older adults
.
J Am Acad Audiol
.
1996
;
7
(
4
):
260
8
.
18.
Golding
M
,
Doyle
K
,
Sindhusake
D
,
Mitchell
P
,
Newall
P
,
Hartley
D
.
Tympanometric and acoustic stapedius reflex measures in older adults: the Blue Mountains Hearing Study
.
J Am Acad Audiol
.
2007
;
18
(
5
):
391
403
. .
19.
Rawool
VW
.
Effect of probe frequency and gender on click-evoked ipsilateral acoustic reflex thresholds
.
Acta Otolaryngol
.
1998
;
118
(
3
):
307
12
. .
20.
Rawool
VW
.
Effect of probe frequency and gender on click-rate-induced facilitation of the acoustic reflex thresholds
.
Scand Audiol
.
1998
;
27
(
3
):
173
7
. .
21.
Schvartz-Leyzac
KC
,
Zwolan
TA
,
Pfingst
BE
.
Effects of electrode deactivation on speech recognition in multichannel cochlear implant recipients
.
Cochlear Implants Int
.
2017
;
18
(
6
):
324
34
. .
22.
DeVries
L
,
Scheperle
R
,
Bierer
JA
.
Assessing the electrode-neuron interface with the electrically evoked compound action potential, electrode position, and behavioral thresholds
.
J Assoc Res Otolaryngol
.
2016
;
17
(
3
):
237
52
. .
23.
Degen
CV
,
Büchner
A
,
Kludt
E
,
Lenarz
T
.
Effect of electrode to Modiolus distance on electrophysiological and psychophysical parameters in CI patients with perimodiolar and lateral electrode arrays
.
Otol Neurotol
.
2020
;
41
(
9
):
e1091
97
. .
24.
Davis
TJ
,
Zhang
D
,
Gifford
RH
,
Dawant
BM
,
Labadie
RF
,
Noble
JH
.
Relationship between electrode-to-Modiolus distance and current levels for adults with cochlear implants
.
Otol Neurotol
.
2016
;
37
(
1
):
31
7
. .
25.
Wanna
,
GB
,
Noble
,
JH
,
Carlson
,
ML
,
Gifford
,
RH
,
Dietrich
,
MS
,
Haynes
,
DS
, et al
.
Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes
.
Laryngoscope
.
2014
;
124
(
Suppl 6
).
S1
7
. .
26.
Wolfe
J
,
Gilbert
M
,
Schafer
E
,
Litvak
LM
,
Spahr
AJ
,
Saoji
A
, et al
.
Optimizations for the electrically-evoked stapedial reflex threshold measurement in cochlear implant recipients
.
Ear Hear
.
2017
;
38
(
2
):
255
61
. .
27.
Palani
S
,
Alexander
A
,
Sreenivasan
A
.
Evaluation of the electrically-evoked stapedial reflex threshold in pediatric cochlear implant users with high-frequency probe tones
.
Int Arch Otorhinolaryngol
.
2022
;
26
(
4
):
e566
73
. .
28.
Carranco Hernandez
L
,
Cristerna Sánchez
L
,
Camacho Olivares
M
,
Rodríguez
C
,
Finley
CC
,
Saoji
AA
.
Effect of probe-tone frequency on ipsilateral and contralateral electrical stapedius reflex measurement in children with cochlear implants
.
Ear Hear
.
2019
;
40
(
3
):
732
40
. .
29.
Noble
JH
,
Gifford
RH
,
Hedley-Williams
AJ
,
Dawant
BM
,
Labadie
RF
.
Clinical evaluation of an image-guided cochlear implant programming strategy
.
Audiol Neurootol
.
2014
;
19
(
6
):
400
11
. .
30.
Noble
JH
,
Hedley-Williams
AJ
,
Sunderhaus
L
,
Dawant
BM
,
Labadie
RF
,
Camarata
SM
, et al
.
Initial results with image-guided cochlear implant programming in children
.
Otol Neurotol
.
2016
;
37
(
2
):
e63
9
. .
31.
Noble
JH
,
Labadie
RF
,
Gifford
RH
,
Dawant
BM
.
Image-guidance enables new methods for customizing cochlear implant stimulation strategies
.
IEEE Trans Neural Syst Rehabil Eng
.
2013
;
21
(
5
):
820
9
. .
32.
R-CoreTeam
R
.
A language and environment for statistical computing
.
Vienna, Austria
:
R Foundation for Statistical Computing
;
2020
.
33.
Bates
D
,
Mächler
M
,
Bolker
B
,
Walker
S
.
Fitting linear mixed-effects models using lme4
.
J Stat Softw
.
2015
;
67
(
1
):
1
48
. .
34.
Kuznetsova
A
,
Brockhoff
PB
,
Christensen
RHB
.
Christensen, lmerTest package: tests in linear mixed effects models
.
J Stat Softw
.
2017
;
82
(
13
):
1
26
. .
35.
Gallo
R
,
Glorig
A
.
Permanent threshold shift changes produced by noise exposure and aging
.
Am Ind Hyg Assoc J
.
1964
;
25
:
237
45
. .
36.
Axelsson
A
,
Lindgren
F
.
Pop music and hearing
.
Ear and hearing
.
1981
;
2
(
2
):
64
9
. .
37.
Tak
S
,
Davis
RR
,
Calvert
GM
.
Exposure to hazardous workplace noise and use of hearing protection devices among US workers-NHANES, 1999-2004
.
Am J Ind Med
.
2009
;
52
(
5
):
358
71
. .
38.
Warner-Czyz
AD
,
Cain
S
.
Age and gender differences in children and adolescents’ attitudes toward noise
.
Int J Aud
.
2016
;
55
(
2
):
83
92
. .
39.
Wang
Q
,
Wang
X
,
Yang
L
,
Han
K
,
Huang
Z
,
Wu
H
.
Sex differences in noise-induced hearing loss: a cross-sectional study in China
.
Bio Sex Dif
.
2021
;
12
(
1
):
24
. .
40.
Kujawa
SG
,
Liberman
MC
.
Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth
.
J neurosci
.
2006
;
26
(
7
):
2115
23
. .
41.
Fernandez
KA
,
Jeffers
PW
,
Lall
K
,
Liberman
MC
,
Kujawa
SG
.
Aging after noise exposure: acceleration of cochlear synaptopathy in “recovered” ears
.
J Neuroscience : the official journal of the Society for Neurosci
.
2015
;
35
(
19
):
7509
20
. .
42.
Ryugo
DK
.
Projections of low spontaneous rate, high threshold auditory nerve fibers to the small cell cap of the cochlear nucleus in cats
.
Neuroscience
.
2008
;
154
(
1
):
114
26
. .
43.
Keithley
EM
.
Pathology and mechanisms of cochlear aging
.
J Neurosci Res
.
2020
;
98
(
9
):
1674
84
. .
44.
McClaskey
CM
,
Dias
JW
,
Schmiedt
RA
,
Dubno
JR
,
Harris
KC
.
Evidence for loss of activity in low-spontaneous-rate auditory nerve fibers of older adults
.
J Assoc Res Otolaryngol
.
2022
;
23
(
2
):
273
84
. .
45.
Shehabi
AM
,
Prendergast
G
,
Plack
CJ
.
The relative and combined effects of noise exposure and aging on auditory peripheral neural deafferentation: a narrative review
.
Front Aging Neurosci
.
2022
;
14
:
877588
. .
46.
O'Connell
BP
,
Hunter
JB
,
Wanna
GB
.
The importance of electrode location in cochlear implantation
.
Laryngoscope Investig Otolaryngol
.
2016
;
1
(
6
):
169
74
. .
47.
Finley
CC
,
Holden
TA
,
Holden
LK
,
Whiting
BR
,
Chole
RA
,
Neely
GJ
, et al
.
Role of electrode placement as a contributor to variability in cochlear implant outcomes
.
Otol Neurotol
.
2008
;
29
(
7
):
920
8
. .
48.
Holden
LK
,
Finley
CC
,
Firszt
JB
,
Holden
TA
,
Brenner
C
,
Potts
LG
, et al
.
Factors affecting open-set word recognition in adults with cochlear implants
.
Ear Hear
.
2013
;
34
(
3
):
342
60
. .
49.
Liebscher
T
,
Mewes
A
,
Hoppe
U
,
Hornung
J
,
Brademann
G
,
Hey
M
.
Electrode translocations in perimodiolar cochlear implant electrodes: audiological and electrophysiological outcome
.
Z Med Phys
.
2021
;
31
(
3
):
265
75
. .
50.
Cleary
M
,
Bernstein
JGW
,
Stakhovskaya
OA
,
Noble
J
,
Kolberg
E
,
Jensen
KK
, et al
.
The relationship between interaural insertion-depth differences, scalar location, and interaural time-difference processing in adult bilateral cochlear-implant listeners
.
Trends Hear
.
2022
;
26
:
23312165221129165
. .
You do not currently have access to this content.