Introduction: Auditory performance in noise of cochlear implant recipients can be assessed with the adaptive Matrix test (MT); however, when the speech-to-noise ratio (SNR) exceeds 15 dB, the background noise has any negative impact on the speech recognition. Here, we aim to evaluate the predictive power of aided pure-tone audiometry and speech recognition in quiet and establish cut-off values for both tests that indicate whether auditory performance in noise can be assessed using the Matrix sentence test in a diffuse noise environment. Methods: Here, we assessed the power of pure-tone audiometry and speech recognition in quiet to predict the response to the MT. Ninety-eight cochlear implant recipients were assessed using different sound processors from Advanced Bionics (n = 56) and CochlearTM (n = 42). Auditory tests were performed at least 1 year after cochlear implantation or upgrading the sound processor to ensure the best benefit of the implant. Auditory assessment of the implanted ear in free-field conditions included: pure-tone average (PTA), speech discrimination score (SDS) in quiet at 65 dB, and speech recognition threshold (SRT) in noise that is the SNR at which the patient can correctly recognize 50% of the words using the MT in a diffuse sound field. Results: The SRT in noise was determined in 60 patients (61%) and undetermined in 38 (39%) using the MT. When cut-off values for PTA <36 dB and SDS >41% were used separately, they were able to predict a positive response to the MT in 83% of recipients; using both cut-off values together, the predictive value reached 92%. Discussion: As the pure-tone audiometry is standardized universally and the speech recognition in quiet could vary depending on the language used; we propose that the MT should be performed in recipients with PTA <36 dB, and in recipients with PTA >36 dB, a list of Matrix sentences at a fixed SNR should be presented to determine the percentage of words understood. This approach should enable clinicians to obtain information about auditory performance in noise whenever possible.

1.
Coez
A
,
Zilbovicius
M
,
Ferrary
E
,
Bouccara
D
,
Mosnier
I
,
Ambert-Dahan
E
, et al
.
Cochlear implant benefits in deafness rehabilitation: PET study of temporal voice activations
.
J Nucl Med
.
2008
;
49
(
1
):
60
7
.
2.
Rumeau
C
,
Frère
J
,
Montaut-Verient
B
,
Lion
A
,
Gauchard
G
,
Parietti-Winkler
C
.
Quality of life and audiologic performance through the ability to phone of cochlear implant users
.
Eur Arch Oto-Rhino-Laryngol
.
2015
;
272
(
12
):
3685
92
.
3.
Borel
S
,
Dupré
S
,
de Bergh
M
,
Sterkers
O
,
Mosnier
I
,
Ferrary
E
.
Rehabilitation of telephone communication in cochlear-implanted adults
.
Eur Ann Otorhinolaryngol Head Neck Dis
.
2020
;
137
(
5
):
381
6
.
4.
Guevara
N
,
Grech
C
,
Gahide
I
,
Gallego
S
.
Assessment of the contralateral routing of signal system in unilateral cochlear implantation
.
Clin Otolaryngol
.
2015
;
40
(
6
):
535
44
.
5.
Rey
P
,
Cochard
N
,
Rizzoli
M
,
Laborde
ML
,
Tartayre
M
,
Mondain
M
, et al
.
Technical aids for speech understanding in cochlear implanted adults using cell-phones
.
Eur Ann Otorhinolaryngol Head Neck Dis
.
2016
;
133
(
4
):
253
6
.
6.
Mosnier
I
,
Sterkers
O
,
Nguyen
Y
,
Lahlou
G
.
Benefits in noise from sound processor upgrade in thirty-three cochlear implant users for more than 20 years
.
Eur Arch Oto-Rhino-Laryngol
.
2021
;
278
(
3
):
827
31
.
7.
Kollmeier
B
,
Warzybok
A
,
Hochmuth
S
,
Zokoll
MA
,
Uslar
V
,
Brand
T
, et al
.
The multilingual matrix test: principles, applications, and comparison across languages: a review
.
Int J Audiol
.
2015
;
54
(
Suppl 2
):
3
16
.
8.
Jansen
S
,
Luts
H
,
Wagener
KC
,
Kollmeier
B
,
Del Rio
M
,
Dauman
R
, et al
.
Comparison of three types of French speech-in-noise tests: a multi-center study
.
Int J Audiol
.
2012
;
51
(
3
):
164
73
.
9.
Joly
CA
,
Reynard
P
,
Mezzi
K
,
Bakhos
D
,
Bergeron
F
,
Bonnard
D
, et al
.
Guidelines of the French society of otorhinolaryngology-head and neck surgery (SFORL) and the French society of audiology (SFA) for speech-in-noise testing in adults
.
Eur Ann Otorhinolaryngol Head Neck Dis
.
2022
;
139
(
1
):
21
7
.
10.
Wagener
K
,
Josvassen
JL
,
Ardenkjaer
R
.
Design, optimization and evaluation of a Danish sentence test in noise
.
Int J Audiol
.
2003
;
42
(
1
):
10
7
.
11.
Ozimek
E
,
Warzybok
A
,
Kutzner
D
.
Polish sentence matrix test for speech intelligibility measurement in noise
.
Int J Audiol
.
2010
;
49
(
6
):
444
54
.
12.
Hochmuth
S
,
Brand
T
,
Zokoll
MA
,
Castro
FZ
,
Wardenga
N
,
Kollmeier
B
.
A Spanish matrix sentence test for assessing speech reception thresholds in noise
.
Int J Audiol
.
2012
;
51
(
7
):
536
44
.
13.
Dietz
A
,
Buschermöhle
M
,
Aarnisalo
AA
,
Vanhanen
A
,
Hyyrynen
T
,
Aaltonen
O
, et al
.
The development and evaluation of the Finnish Matrix Sentence Test for speech intelligibility assessment
.
Acta Otolaryngol
.
2014
;
134
(
7
):
728
37
.
14.
Houben
R
,
Koopman
J
,
Luts
H
,
Wagener
KC
,
van Wieringen
A
,
Verschuure
H
, et al
.
Development of a Dutch matrix sentence test to assess speech intelligibility in noise
.
Int J Audiol
.
2014
;
53
(
10
):
760
3
.
15.
Zokoll
MA
,
Fidan
D
,
Türkyılmaz
D
,
Hochmuth
S
,
Ergenç
İ
,
Sennaroğlu
G
, et al
.
Development and evaluation of the Turkish matrix sentence test
.
Int J Audiol
.
2015
;
54
(
Suppl 2
):
51
61
.
16.
Hey
M
,
Hocke
T
,
Hedderich
J
,
Müller-Deile
J
.
Investigation of a matrix sentence test in noise: reproducibility and discrimination function in cochlear implant patients
.
Int J Audiol
.
2014
;
53
(
12
):
895
902
.
17.
Theelen-van den Hoek
FL
,
Houben
R
,
Dreschler
WA
.
Investigation into the applicability and optimization of the Dutch matrix sentence test for use with cochlear implant users
.
Int J Audiol
.
2014
;
53
(
11
):
817
28
.
18.
Dietz
A
,
Buschermöhle
M
,
Sivonen
V
,
Willberg
T
,
Aarnisalo
AA
,
Lenarz
T
, et al
.
Characteristics and international comparability of the Finnish matrix sentence test in cochlear implant recipients
.
Int J Audiol
.
2015
;
54
(
Suppl 2
):
80
7
.
19.
Polat
Z
,
Bulut
E
,
Ataş
A
.
Assessment of the speech intelligibility performance of post lingual cochlear implant users at different signal-to-noise ratios using the Turkish matrix test
.
Balkan Med J
.
2016
;
33
(
5
):
532
8
.
20.
Willberg
T
,
Sivonen
V
,
Linder
P
,
Dietz
A
.
Comparing the speech perception of cochlear implant users with three different Finnish speech intelligibility tests in noise
.
J Clin Med
.
2021
;
10
(
16
):
3666
.
21.
HörTech gGmbH
.
International matrix tests
.
Int Matrix Tests
. Available from: https://www.mack-team.de/pdf/ht-internationalermatrixtest.pdf.
22.
Hagerman
B
.
Sentences for testing speech intelligibility in noise
.
Scand Audiol
.
1982
;
11
(
2
):
79
87
.
23.
ANSI S3. 5-1997. Methods for the calculation of the speech intelligibility index
.
New York
:
Amer Nat Stand Inst
.
1997
;
Vol. 19
. p.
90
119
.
24.
Mosnier
I
,
Mathias
N
,
Flament
J
,
Amar
D
,
Liagre-Callies
A
,
Borel
S
, et al
.
Benefit of the UltraZoom beamforming technology in noise in cochlear implant users
.
Eur Arch Oto-Rhino-Laryngol
.
2017
;
274
(
9
):
3335
42
.
25.
Kaandorp
MW
,
Smits
C
,
Merkus
P
,
Goverts
ST
,
Festen
JM
.
Assessing speech recognition abilities with digits in noise in cochlear implant and hearing aid users
.
Int J Audiol
.
2015
;
54
(
1
):
48
57
.
26.
Gifford
RH
,
Shallop
JK
,
Peterson
AM
.
Speech recognition materials and ceiling effects: considerations for cochlear implant programs
.
Audiol Neurootol
.
2008
;
13
(
3
):
193
205
.
27.
Lafon
JC
.
Test phonétique, phonation, audition
.
JFORL J Fr Otorhinolaryngol Audiophonol Chir Maxillofac
.
1972
;
21
(
3
):
223
9
.
28.
Brand
T
,
Kollmeier
B
.
Efficient adaptive procedures for threshold and concurrent slope estimates for psychophysics and speech intelligibility tests
.
J Acoust Soc Am
.
2002
;
111
(
6
):
2801
10
.
29.
R Core Team
.
R: the R project for statistical computing
.
R-project.org
.
2020
. Available from: https://www.r-project.org/.
30.
Wardrop
P
,
Whinney
D
,
Rebscher
SJ
,
Luxford
W
,
Leake
P
.
A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. II: comparison of Spiral Clarion and HiFocus II electrodes
.
Hear Res
.
2005
;
203
(
1–2
):
68
79
.
31.
Gstoettner
W
,
Helbig
S
,
Settevendemie
C
,
Baumann
U
,
Wagenblast
J
,
Arnoldner
C
.
A new electrode for residual hearing preservation in cochlear implantation: first clinical results
.
Acta Otolaryngol
.
2009
;
129
(
4
):
372
9
.
32.
Hassepass
F
,
Bulla
S
,
Maier
W
,
Laszig
R
,
Arndt
S
,
Beck
R
, et al
.
The new mid-scala electrode array: a radiologic and histologic study in human temporal bones
.
Otol Neurotol
.
2014
;
35
(
8
):
1415
20
.
33.
Sipari
S
,
Iso-Mustajärvi
M
,
Matikka
H
,
Tervaniemi
J
,
Koistinen
A
,
Aarnisalo
A
, et al
.
Cochlear implantation with a novel long straight electrode: the insertion results evaluated by imaging and histology in human temporal bones
.
Otol Neurotol
.
2018
;
39
(
9
):
e784
93
.
34.
Mosnier
I
,
Marx
M
,
Venail
F
,
Loundon
N
,
Roux-Vaillard
S
,
Sterkers
O
.
Benefits from upgrade to the CP810 sound processor for Nucleus 24 cochlear implant recipients
.
Eur Arch Oto-Rhino-Laryngol
.
2014
;
271
(
1
):
49
57
.
35.
Dillier
N
,
Lai
WK
.
Speech intelligibility in various noise conditions with the Nucleus® 5 CP810 sound processor
.
Audiol Res
.
2015
;
5
(
2
):
132
.
36.
Gifford
RH
,
Dorman
MF
,
Sheffield
SW
,
Teece
K
,
Olund
AP
.
Availability of binaural cues for bilateral implant recipients and bimodal listeners with and without preserved hearing in the implanted ear
.
Audiol Neurootol
.
2014
;
19
(
1
):
57
71
.
37.
Kelsall
D
,
Lupo
J
,
Biever
A
.
Longitudinal outcomes of cochlear implantation and bimodal hearing in a large group of adults: a multicenter clinical study
.
Am J Otolaryngol
.
2021
;
42
(
1
):
102773
.
You do not currently have access to this content.