Introduction: The primary objective of this article was to determine if any histological alterations occur in the round window (RW) and adjacent anatomical structures of an animal model with normal hearing when a cochlear implant (CI) electrode array is inserted. Furthermore, this article aims to relate these histological alterations to the auditory changes generated. Methods: Cochlear implantation was performed, following the principles of minimally traumatic surgery (MTS), in 15 ears of nonhuman primates (Macaca fascicularis) (Mf) with normal hearing. Auditory brainstem-evoked potentials (ABR) using clicks and tones were used prior to surgery and during a 6-month follow-up period. Histological evaluation was carried out, analyzing the position of the electrode array with respect to the round window membrane (RWM), its percentage of occupation and integrity, the presence of intracochlear damage, and the tissue reaction provoked, the latter of which was quantified in the temporal bones. Results: Surgery was performed on all 15 ears without relevant incidences. Regarding histology, the electrode array in the RW of all ears presented a lateral position with respect to the modiolus. No lesions affecting the integrity of the RW were observed. The mean value of the array’s occupation in the RW was 25%. Tissue reaction, in the form of fibrosis, was observed in all ears and more intensely in the trans-RWM and post-RWM areas. In all ears, the electrodes remained on the scala tympani. No profound hearing impairment was recorded in any ear, being the mean loss of 25.4 dB when comparing presurgical thresholds with those collected 6 months after implantation in ABR click and 24.4 dB in ABR tone burst. Conclusions: The animal model and Hybrid L-14 (HL14) electrode array were optimal for implementing a surgical technique similar to that routinely performed on humans. Mild histological alterations were observed in the round window membrane and adjacent anatomical structures from the insertion of a cochlear implant electrode array. Following the minimally invasive technique, levels of hearing preservation were satisfactory, reaching a pre-post difference of 25.4 dB in the ABR click and 24.4 dB for a high-frequency tone burst. Complete hearing impairment was not observed in either ear. Correlation between the severity of histological alterations and hearing changes recorded in the ABR studies was observed.

1.
Adunka
OF
,
Pillsbury
HC
,
Buchman
CA
.
Minimizing intracochlear trauma during cochlear implantation
.
Adv Oto-Rhino-Laryngol
.
2010
;
67
:
96
107
.
2.
Alegre
M
,
Gurtubay
IG
,
Iriarte
J
,
Ciordia
E
,
Manrique
M
,
Artieda
J
.
Brainstem Auditory Evoked Potentials (BAEPs) in the cynomolgus macaque monkey. Equivalence with human BAEPs and proposal of a new nomenclature
.
Hear Res
.
2001
151
1-2
115
20
.
3.
Bas
E
,
Gupta
C
,
Van De Water
T
.
A novel organ of corti explant model for the study of cochlear implantation trauma
.
Anat Rec
.
2012
;
295
(
11
):
1944
56
.
4.
Carlson
L
,
Driscoll
CLW
,
Gifford
RH
,
Service
GJ
,
Tombers
NM
,
Hughes-Borst
BJ
et al
.
Implications of minimizing trauma during conventional cochlear implantation
.
Otol Neurotol
.
2011
;
32
(
6
):
962
8
.
5.
Choi
C
,
Oghalai
J
.
Predicting the effect of post-implant cochlear fibrosis on residual hearing
.
Hear Res
.
2005
205
1–2
193
200
.
6.
De Abajo
J
,
Manrique-Huarte
R
,
Sanhueza
I
,
Alvarez-Gómez
L
,
Zulueta-Santos
C
,
Calavia
D
et al
.
Effects of implantation and reimplantation of cochlear implant electrodes in an in vivo animal experimental model (Macaca fascicularis)
.
Ear & Hearing
.
2017
;
38
(
1
):
e57
e68
.
7.
Doherty
JK
,
Linthicum
FH
Jr
.
Cochlear endosteal erosion with focal osteomyelitis induced by cochlear implantation
.
Otol Neurotol
.
2004
;
25
(
6
):
1029
30
.
8.
Eshraghi
AA
,
Yang
NW
,
Balkany
TJ
.
Comparative study of cochlear damage with three perimodiolar electrode designs
.
Laryngoscope
.
2003
;
113
(
3
):
415
9
.
9.
Eshraghi
AA
,
Polak
M
,
He
J
,
Telischi
FF
,
Balkany
TJ
,
Van De Water
TR
.
Pattern of hearing loss in a rat model of cochlear implantation trauma
.
Otol Neurotol
.
2005
;
26
(
3
):
442
7; discussion 447
.
10.
Eshraghi
AA
,
Lang
DM
,
Roell
J
,
Van De Water
TR
,
Garnham
C
,
Rodrigues
H
et al
.
Mechanisms of programmed cell death signaling in hair cells and support cells post-electrode insertion trauma
.
Acta Otolaryngol
.
2015
;
135
(
4
):
328
34
.
11.
Fraysse
B
,
Macías
AR
,
Sterkers
O
,
Burdo
S
,
Ramsden
R
,
Deguine
O
et al
.
Residual hearing con- servation and electroacoustic stimulation with the nucleus 24 contour advance cochlear implant
.
Otol Neurotol
.
2006
;
27
(
5
):
624
33
.
12.
Gantz
B
,
Turner
C
,
Gfeller
K
,
Lowder
MW
.
Preservation of hearing in cochlear implant sur- gery: advantages of combined electrical and acoustical speech processing
.
Laryngoscope
.
2005
;
115
(
5
):
796
802
.
13.
Gantz
BJ
,
Hansen
MR
,
Turner
CW
,
Oleson
JJ
,
Reiss
LA
,
Parkinson
AJ
.
Hybrid 10 clinical trial: preliminary re-sults
.
Audiol Neurootol
.
2009
14
Suppl 1
32
8
.
14.
Gfeller
KE
,
Olszewski
C
,
Turner
C
,
Gantz
B
,
Oleson
J
,
Oleson
J
.
Music perception with cochlear implants and residual hearing
.
Audiol Neurotol
.
2006
11
Suppl 1
12
5
.
15.
Goycoolea
MV
,
Muchow
D
,
Schachern
PA
.
Experimental studies on round window structure: function and permeability
.
Laryngoscope
.
1988
98
6 Pt 2 Suppl 44
1
20
.
16.
Gifford
RH
,
Dorman
MF
,
Skarzynski
H
,
Lorens
A
,
Polak
M
,
Driscoll
CLW
et al
.
Cochlear implantation with hearing preservation yields significant benefit for speech recognition in complex listening environments
.
Ear Hear
.
2013
;
34
(
4
):
413
25
.
17.
Huang
LK
.
Wang MJ Image thresholding by minimizing the measure of fuzziness
.
Pattern Recogn
.
1995
;
28
:
41
5
.
18.
Kunda
LD
,
Stidham
KR
,
Inserra
MM
,
Roland
PS
,
Franklin
D
,
Roberson
JB
Jr
.
Silicone allergy: a new cause for cochlear implant extrusion and its management
.
Otol Neurotol
.
2006
;
27
(
8
):
1078
82
.
19.
Lenarz
T
,
Verhaert
N
,
Desloovere
C
,
Desmet
J
,
D'hondt
C
,
González
JCF
et al
.
A comparative study on speech in noise understanding with a direct acoustic cochlear implant in subjects with severe to profound mixed hearing loss
.
Audiol Neurootol
.
2014
;
19
(
3
):
164
74
.
20.
Linthicum
FH
Jr
,
Fayad
J
,
Otto
SR
,
Galey
FR
,
House
WF
.
Cochlear implant histopathology
.
Am J Otol
.
1991
;
12
(
4
):
245
311
.
21.
Li
J
,
Chen
J
,
Kirsner
R
.
Pathophysiology of acute wound healing
.
Clin Dermatol
.
2007
;
25
(
1
):
9
18
.
22.
Luers
JC
,
Hüttenbrink
KB
,
Beutner
D
.
Surgical anatomy of the round window Implications for cochlear implantation
.
Clin Otolaryngol
.
2018
;
43
(
2
):
417
24
.
23.
Manrique
R
,
Picciafuoco
S
,
Cervera-Paz
FJ
,
Pérez
N
,
Manrique
M
.
Promontorial cochleostomy in non-human primates. Is it atraumatic
.
Eur Arch Oto-Rhino-Laryngol
.
2013
;
270
(
1
):
45
52
.
24.
Manrique
M
,
Picciafuoco
S
,
Manrique
R
,
Sanhueza
I
,
Domínguez
P
,
Pérez
N
et al
.
Atraumaticity study of 2 cochlear implant electrode arrays
.
Otol Neurotol
.
2014
;
35
(
4
):
619
28
.
25.
Manrique-Huarte
R
,
Huarte
A
,
Manrique
MJ
.
Surgical findings and auditory performance after cochlear implant revision surgery
.
Eur Arch Oto-Rhino-Laryngol
.
2016
;
273
(
3
):
621
9
.
26.
Manrique-Huarte
R
,
Zulueta-Santos
C
,
Calavia
D
,
Linera-Alperi
,
Gallego
MA
,
Jolly
C
et al
.
Cochlear implantation with a dexamethasone eluting electrode array: functional and anatomical changes in non-human primates
.
Otol Neurotol
.
2020
;
41
(
7
):
812
22
.
27.
Moody
DB
,
Stebbins
WC
,
Hawkins
JE
Jr
,
Johnsson
LG
.
Hearing loss and cochlear pathology in the monkey (Macaca) following exposure to high levels of noise
.
Arch Oto-Rhino-Laryngol
.
1978
220
1-2
47
72
.
28.
Nadol
JB
Jr
,
Shiao
JY
,
Burgess
BJ
,
Ketten
DR
,
Eddington
DK
,
Gantz
BJ
et al
.
Histopathology of cochlear implants in humans
.
Ann Otol Rhinol Laryngol
.
2001
;
110
(
9
):
883
91
.
29.
Nadol
JB
Jr
,
Eddington
DK
.
Histologic evaluation of the tis- sue seal and biologic response around cochlear implant electrodes in the human
.
Otol Neurotol
.
2004
;
25
(
3
):
257
62
.
30.
Nadol
JB
Jr
,
Eddington
DK
,
Burgess
BJ
.
Foreign body or hypersensitivity granuloma of the inner ear after cochlear implantation: one possible cause of a soft failure
.
Otol Neurotol
.
2008
;
29
(
8
):
1076
84
.
31.
O’Leary
SJ
,
Monksfield
P
,
Kel
G
,
Connolly
T
,
Souter
MA
,
Chang
A
et al
.
Relations between cochlear histopathology and hearing loss in experimental cochlear implantation
.
Hear Res
.
2013
;
298
:
27
35
.
32.
Ramos-Macias
A
,
O'Leary
S
,
Ramos-de Miguel
A
,
Bester
C
,
Falcon-González
JC
.
(2019) intraoperative intracochlear electrocochleography and residual hearing preservation outcomes when using two types of slim electrode arrays in cochlear implantation
.
Otol Neurotol
.
2019
40
5S Suppl 1
29
37
.
33.
Ruifrok
AC
,
Johnston
DA
.
Quantification of histochemical staining by color deconvolution
.
Anal Quat Cytol Hsitol
.
2001
;
23
(
4
):
291
9
.
34.
Santa Maria
PL
,
Gluth
MB
,
Yuan
Y
,
Atlas
MD
,
Blevins
NH
.
Hearing preservation surgery for cochlear implantation: a meta-analysis
.
Otol Neurotol
.
2014
;
35
(
10
):
256
69
.
35.
Schneider
CA
,
Rasband
WS
,
Eliceiri
KW
.
NIH Image to ImageJ: 25 years of image analysis
.
Nat Methods
.
2012
;
9
(
7
):
671
5
.
36.
Schuknecht
H
.
Temporal bone removal at autopsy. Preparation and uses
.
Arch Otolaryngol
.
1968
;
87
(
2
):
129
37
.
37.
Seyyedi
M
,
Nadol
JB
Jr
.
Intracochlear inflammatory response to cochlear implant electrodes in humans
.
Otol Neurotol
.
2014
;
35
(
9
):
1545
51
.
38.
Shepherd
R
,
Verhoeven
K
,
Xu
J
,
Risi
F
,
Fallon
J
,
Wise
A
.
An improved cochlear implant electrode array for use in experimental studies
.
Hear Res
.
2011
277
1-2
20
7
.
39.
Skarzynski
H
,
Lorens
A
,
Zgoda
M
,
Piotrowska
A
,
Skarzynski
PH
,
Szkielkowska
A
.
Atraumatic round window deep insertion of cochlear electrodes
.
Acta Otolaryngol Stockh
.
2011
;
131
(
7
):
740
9
.
40.
Somdas
MA
,
Li
PMMC
,
Whiten
DM
,
Eddington
DK
,
Nadol
JB
Jr
.
Quantitative evaluation of new bone and fibrous tissue in the cochlea following cochlear implantation in the human
.
Audio Neurootol
.
2007
;
12
(
5
):
277
84
.
41.
Stewart
TJ
,
Belal
A
.
Surgical anatomy and pathology of the round window
.
Clin Otolaryngol Allied Sci
.
1981
;
6
(
1
):
45
62
.
42.
Todt
I
,
Mittmann
P
,
Ernst
A
.
Hearing preservation with a midscalar electrode comparison of a regular and steroid/pressure optimized surgical approach in patients with residual hearing
.
Otol Neurotol
.
2016
;
37
(
9
):
349
52
.
43.
Wang
JT
,
Wang
AY
,
Psarros
C
,
Da Cruz
M
.
Rates of revision and device failure in cochlear implant surgery: a 30 year-experience
.
Laryngoscope
.
2014
;
124
(
10
):
2393
9
.
44.
Wanna
GB
,
Noble
JH
,
Carlson
ML
,
Gifford
RH
,
Dietrich
MS
,
Haynes
DS
et al
.
Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes
.
Laryngoscope
.
2014
124 Suppl 6
0 6
1
7
.
45.
Wysocki
J
.
Dimensions of the vestibular and tympanic scalae of the cochlea in selected mammals
.
Hear Res
.
2001
161
1-2
1
9
.
46.
Wysocki
J
.
Topographical anatomy and morphometry of the temporal bone of the macaque
.
Folia Morphol
.
2009
;
68
(
1
):
13
22
.
47.
Yu
M
,
Arteaga
DN
,
Aksit
A
,
Chiang
H
,
Olson
ES
,
Kysar
JW
et al
.
Anatomical and functional consequences of microneedle perforation of round window membrane
.
Otol Neurotol
.
2020
;
41
(
2
):
280
7
.
You do not currently have access to this content.