Introduction: The amount of listening effort needed to understand speech in every-day life is an important outcome measure of the effectiveness of a hearing device. The main goal of this study was to assess subjective listening effort in patients implanted with an active middle ear implant Vibrant Soundbridge (VSB) with and without using their speech processor in complex acoustic scenarios. Methods: Ten VSB users were measured using the adaptive categorical listening effort scaling (ACALES) method in four different acoustic scenarios, realized using a multichannel loudspeaker array. The four acoustic scenarios included both spatially simple and complex speech and noise arrangements that realistically simulated challenging every-day listening situations. Signal-to-noise ratios (SNRs) were adaptively varied during the measurement. Twelve normal-hearing (NH) listeners performed the same experiment as a control group. Results: Listening effort was significantly reduced in all tested acoustic scenarios when participants used their VSB. When using the VSB, SNRs corresponding to mild-to-moderate listening effort were found not to be statistically different from SNRs found in the NH control group. SNRs corresponding to extreme listening effort of VSB users approached NH values, indicating partial restoration of listening effort. Discussion and Conclusions: Usage of the middle ear implant VSB was found to restore subjective listening effort to normal at high SNRs completely, and at lower SNRs partially. The remaining gap at low SNRs may be due to lower effectiveness of signal processing at high noise levels or due to the microphone location effect.

1.
Baumgärtel
RM
,
Hu
H
,
Krawczyk-Becker
M
,
Marquardt
D
,
Herzke
T
,
Coleman
G
,
.
Comparing binaural pre-processing strategies II: speech intelligibility of bilateral cochlear implant users
.
Trends Hearing
.
2015
;
19
. https://doi.org/10.1177/2331216515617917.
2.
Baumgartner
W-D
,
Böheim
K
,
Hagen
R
,
Müller
J
,
Lenarz
T
,
Reiss
S
,
.
The vibrant soundbridge for conductive and mixed hearing losses: European multicenter study results
.
Adv Otorhinolaryngol
.
2010
;
60
;
38
50
.
3.
Bruchhage
KL
,
Leichtle
A
,
Schönweiler
R
,
Todt
I
,
Baumgartner
WD
,
Frenzel
H
,
.
Systematic review to evaluate the safety, efficacy and economical outcomes of the Vibrant Soundbridge for the treatment of sensorineural hearing loss
.
Eur Arch Otorhinolaryngol
.
2017
;
274
(
4
):
1797
806
.
4.
Butler
CL
,
Thavaneswaran
P
,
Lee
IH
.
Efficacy of the active middle-ear implant in patients with sensorineural hearing loss
.
J Laryngol Otol
.
2013
;
127
(
S2
):
S8
16
.
5.
Dumon
T
,
Gratacap
B
,
Firmin
F
,
Vincent
R
,
Pialoux
R
,
Casse
B
,
.
Vibrant Soundbridge middle ear implant in mixed hearing loss. Indications, techniques, results
.
Rev Laryngol Otol Rhinol
.
2009
;
130
(
2
):
75
81
.
6.
Frenzel
H
,
Hanke
F
,
Beltrame
M
,
Steffen
A
,
Schönweiler
R
,
Wollenberg
B
.
Application of the vibrant soundbridge to unilateral osseous atresia cases
.
The Laryngoscope
.
2009
;
119
(
1
):
67
74
.
7.
Garin
P
,
Thill
MP
,
Gerard
JM
,
Galle
C
,
Gersdorff
M
.
Speech discrimination in background noise with the Vibrant® Soundbridge™ middle ear implant
.
Otorhinolaryngol Nova
.
2002
;
12
(
3
):
119
23
.
8.
Hollfelder
D
,
Prein
L
,
Jürgens
T
,
Leichtle
A
,
Bruchhage
KL
.
Influence of directional microphones on listening effort in middle ear implant users
.
HNO
.
2022
. Epub ahead of print. https://doi.org/10.1007/s00106-022-01223-4.
9.
Hornsby
BWY
.
The effects of hearing aid use on listening effort and mental fatigue associated with sustained speech processing demands
.
Ear Hear
.
2013
;
34
(
5
):
523
34
.
10.
Hughes
SE
,
Hutchings
HA
,
Rapport
FL
,
McMahon
CM
,
Boisvert
I
.
Social connectedness and perceived listening effort in adult cochlear implant users: a grounded theory to establish content validity for a new patient-reported outcome measure
.
Ear Hear
.
2018
;
39
(
5
):
922
34
.
11.
Jamovi
.
The Jamovi Project. Version 1.6 [Computer software]
.
2021
. https://www.jamovi.org.
12.
Klink
K
,
Schulte
M
,
Meis
M
.
Measuring listening effort in the field of audiology – a literature review of methods (part 2)
.
Zeitschr f Audiol
.
2012
;
51
:
96
105
.
13.
Krueger
M
,
Schulte
M
,
Brand
T
,
Holube
I
.
Development of an adaptive scaling method for subjective listening effort
.
The J Acoust Soc America
.
2017
;
141
(
6
):
4680
93
.
14.
Lailach
S
,
Zahnert
T
,
Maurer
J
,
Hempel
JM
,
Koitschev
A
,
Hollfelder
D
,
.
The vibrating ossicular prosthesis in children and adolescents: a retrospective study
.
Eur Arch Otorhinolaryngol
.
2020
;
277
(
1
):
55
60
.
15.
Lailach
S
,
Müller
C
,
Lasurashvili
N
,
Seidler
H
,
Zahnert
T
.
Aktive Hörimplantate bei chronischer Otitis media
.
HNO
.
2019
.
16.
Lee
JM
,
Jeon
JH
,
Moon
IS
,
Choi
JY
.
Benefits of active middle ear implants over hearing aids in patients with sloping high tone hearing loss: comparison with hearing aids
.
Acta Otorhinolaryngol Ital
.
2017
;
37
(
3
):
218
23
.
17.
Lee
JM
,
Lee
HJ
,
Moon
IS
,
Choi
JY
.
Effects of Vibrant Soundbridge on tinnitus accompanied by sensorineural hearing loss
.
PLoS One
.
2020
;
15
(
2
):
e0228498
.
18.
Luetje
CM
,
Brackman
D
,
Balkany
TJ
,
Maw
J
,
Baker
RS
,
Kelsall
D
,
.
Phase III clinical trial results with the vibrant soundbridge implantable middle ear hearing device: a prospective controlled multicenter study
.
Otolaryngol Head Neck Surg
.
2002
;
126
(
2
):
97
107
.
19.
Ohlenforst
B
,
Zekveld
AA
,
Jansma
EP
,
Wang
Y
,
Naylor
G
,
Lorens
A
,
.
Effects of hearing impairment and hearing aid amplification on listening effort: a systematic review
.
Ear Hear
.
2017
;
38
(
3
):
267
81
.
20.
Pichora-Fuller
MK
,
Kramer
SE
,
Eckert
MA
,
Edwards
B
,
Hornsby
BWY
,
Humes
LE
,
.
Hearing impairment and cognitive energy: the framework for understanding effortful listening (FUEL)
.
Ear Hear
.
2016
;
37
(
1
):
5S
27S
.
21.
Rahne
T
,
Skarzynski
PH
,
Hagen
R
,
Radeloff
A
,
Lassaletta
L
,
Barbara
M
,
.
A retrospective European multicenter analysis of the functional outcomes after active middle ear implant surgery using the third generation vibroplasty couplers
.
Eur Arch Otorhinolaryngol
.
2021
;
278
(
1
):
67
75
.
22.
Smeds
K
,
Wolters
F
,
Rung
M
.
Estimation of signal-to-noise-ratios in realistic sound scenarios
.
J Am Acad Audiol
.
2015
;
26
(
02
):
183
96
.
23.
Snik
FM
,
Cremers
WRJ
.
First audiometric results with the vibrant soundbridge, a semi-implantable hearing device for sensorineural hearing loss
.
Int J Audiol
.
1999
;
38
(
6
):
335
8
.
24.
Streitberger
C
,
Perotti
M
,
Beltrame
MA
,
Giarbini
N
.
Vibrant Soundbridge for hearing restoration after chronic ear surgery
.
Rev Laryngol Otol Rhinol
.
2009
;
130
(
2
):
83
8
.
25.
Truy
E
,
Philibert
B
,
Vesson
J-F
,
Labassi
S
,
Collet
L
.
Vibrant soundbridge versus conventional hearing aid in sensorineural high-frequency hearing loss: a prospective study
.
Otol Neurotol
.
2008
;
29
(
5
):
684
7
.
26.
Wagener
KC
,
Brand
T
,
Kollmeier
B
.
Entwicklung und Evaluation eines Satztests für die deutsche Sprache I: design des Oldenburger Satztests (Development and evaluation of a sentence test for German language I: design of the Oldenburg sentence test)
.
Zeitschr f Audiol
.
1999
;
38
(
1
):
4
15
.
27.
Winn
MB
,
Teece
KH
.
Listening effort is not the same as speech intelligibility score
.
Trends Hear
.
2021
;
25
:
233121652110276
.
28.
Winneke
AH
,
Schulte
M
,
Vormann
M
,
Latzel
M
.
Effect of directional microphone technology in hearing aids on neural correlates of listening and memory effort: an electroencephalographic study
.
Trends Hear
.
2020
;
24
:
233121652094841
.
29.
Wolf-Magele
A
,
Koci
V
,
Schnabl
J
,
Zorowka
P
,
Riechelmann
H
,
Sprinzl
GM
.
Bilateral use of active middle ear implants: speech discrimination results in noise
.
Eur Arch Otorhinolaryngol
.
2016
;
273
(
8
):
2065
72
.
30.
Yihui
Z
,
Jianan
L
,
Aiting
C
,
Bu
D
,
Dongyi
H
,
Huizhan
L
,
.
Utility of vibrant soundbridge in patients with congenital middle and outer ear deformities
.
J Otology
.
2012
;
7
(
2
):
57
61
.
You do not currently have access to this content.