Insulin receptors are expressed on nerve cells in the mammalian brain, but little is known about insulin signaling and the expression of the insulin receptor (IR) and glucose transporters in the cochlea. We performed immunohistochemistry and gene/protein expression analysis to characterize the expression pattern of the IR and glucose transporters in the mouse organ of Corti (OC). We also performed glucose uptake assays to explore the action of insulin and the effects of pioglitazone, an insulin sensitizer, on glucose transport in the OC. Western blots of protein extracts from OCs showed high expression of IR and glucose transporter 3 (GLUT3). Immunohistochemistry demonstrated that the IR is specifically expressed in the supporting cells of the OC. GLUT3 was found in outer and inner hair cells, in the basilar membrane (BM), the stria vascularis (SV), Reissner’s membrane and spiral ganglion neurons (SGN). Glucose transporter 1 (GLUT1) was detected at low levels in the BM, SV and Reissner’s membrane, and showed high expression in the SGN. Fluorescence glucose uptake assays revealed that hair cells take up glucose and that addition of insulin (10 nM or 1 µM) approximately doubled the rate of uptake. Pioglitazone conferred a small but nonsignificant potentiation of glucose uptake at the highest concentration of insulin. Gene expression analysis confirmed expression of IR, GLUT1 and GLUT3 mRNA in the OC. Pioglitazone significantly upregulated IR and GLUT1 mRNA expression, which was further increased by insulin. Together, these data show that insulin-stimulated glucose uptake occurs in the OC and may be associated with upregulation of both the IR and GLUT1.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.