Introduction: The link between dietary branched-chain amino acid (BCAA) intake and metabolic health, particularly in adolescents, is not well established. In this investigation, the metabolic health of adolescents with overweight and obesity in Iran was studied in relation to their intake of dietary BCAAs. Methods: This cross-sectional study included 203 adolescents from the general population who were either overweight or obesity. The consumption of BCAAs and other nutrients was calculated using a valid food frequency questionnaire. Blood pressure and anthropometric measurements were taken. Serum insulin, glucose, and lipid profile were determined from blood samples taken while the subjects were fasting. Subjects were categorized considering having metabolically healthy overweight/obesity and metabolically unhealthy overweight/obesity (MUO) using two distinct approaches (International Diabetes Federation [IDF] criteria and IDF/Homeostasis Model Assessment Insulin Resistance [HOMA-IR] criteria). Results: Considering IDF criteria, increased consumption of dietary BCAAs was associated with significantly decreased odds of MUO (OR = 0.38; 95% CI: 0.18–0.77) in crude model; but in the fully adjusted model, the association became insignificant (OR = 0.49; 95% CI: 0.22–1.09). Based on IDF/HOMA-IR criteria, this association was completely significant in crude model (OR = 0.33; 95% CI: 0.15–0.69) and slightly significant in fully adjusted model (OR = 0.43; 95% CI: 0.18–1.00). Participants with overweight, as opposed to obesity, had considerably lower odds of MUO. Valine, one of the BCAAs, was negatively linked with odds of MUO in maximally adjusted model (OR = 0.43; 95% CI: 0.20–0.96). Conclusions: Among BCAAs, increased consumption of valine via food could reduce the odds of MUO in Iranian adolescents with overweight/obesity.

1.
Geserick
M
,
Vogel
M
,
Gausche
R
,
Lipek
T
,
Spielau
U
,
Keller
E
, et al
.
Acceleration of BMI in early childhood and risk of sustained obesity
.
N Engl J Med
.
2018
;
379
(
14
):
1303
12
.
2.
Zhao
M
,
López-Bermejo
A
,
Caserta
CA
,
Medeiros
CCM
,
Kollias
A
,
Bassols
J
, et al
.
Metabolically healthy obesity and high carotid intima-media thickness in children and adolescents: international childhood vascular structure evaluation consortium
.
Diabetes Care
.
2019
;
42
(
1
):
119
25
.
3.
Kartiosuo
N
,
Ramakrishnan
R
,
Lemeshow
S
,
Juonala
M
,
Burns
TL
,
Woo
JG
, et al
.
Predicting overweight and obesity in young adulthood from childhood body-mass index: comparison of cutoffs derived from longitudinal and cross-sectional data
.
Lancet Child Adolesc Health
.
2019
;
3
(
11
):
795
802
.
4.
Swinburn
BA
,
Kraak
VI
,
Allender
S
,
Atkins
VJ
,
Baker
PI
,
Bogard
JR
, et al
.
The global syndemic of obesity, undernutrition, and climate change: the Lancet Commission report
.
The lancet
.
2019
;
393
(
10173
):
791
846
.
5.
Lobstein
T
,
Jackson-Leach
R
.
Planning for the worst: estimates of obesity and comorbidities in school-age children in 2025
.
Pediatr Obes
.
2016
;
11
(
5
):
321
5
.
6.
Damanhoury
S
,
Newton
A
,
Rashid
M
,
Hartling
L
,
Byrne
J
,
Ball
G
.
Defining metabolically healthy obesity in children: a scoping review
.
Obes Rev
.
2018
;
19
(
11
):
1476
91
.
7.
Naja
F
,
Itani
L
,
Nasrallah
MP
,
Chami
H
,
Tamim
H
,
Nasreddine
L
.
A healthy lifestyle pattern is associated with a metabolically healthy phenotype in overweight and obese adults: a cross-sectional study
.
Eur J Nutr
.
2020
;
59
(
5
):
2145
58
.
8.
Wali
JA
,
Solon-Biet
SM
,
Freire
T
,
Brandon
AE
.
Macronutrient determinants of obesity, insulin resistance and metabolic health
.
Biology
.
2021
;
10
(
4
):
336
.
9.
Siddik
MAB
,
Shin
AC
.
Recent progress on branched-chain amino acids in obesity, diabetes, and beyond
.
Endocrinol Metab
.
2019
;
34
(
3
):
234
46
.
10.
Chou
PY
,
Fasman
GD
.
Structural and functional role of leucine residues in proteins
.
J Mol Biol
.
1973
;
74
(
3
):
263
81
.
11.
Chin
S
,
Shepherd
R
,
Thomas
B
,
Cleghorn
GJ
,
Patrick
M
,
Wilcox
J
, et al
.
Nutritional support in children with end-stage liver disease: a randomized crossover trial of a branched-chain amino acid supplement
.
Am J Clin Nutr
.
1992
;
56
(
1
):
158
63
.
12.
Tietze
IN
,
Pedersen
EB
.
Effect of fish protein supplementation on aminoacid profile and nutritional status in haemodialysis patients
.
Nephrol Dial Transplant
.
1991
;
6
(
12
):
948
54
.
13.
Bower
RH
,
Muggia-Sullam
M
,
Vallgren
S
,
Hurst
JM
,
Kern
KA
,
LaFRANCE
R
, et al
.
Branched chain amino acid-enriched solutions in the septic patient. A randomized, prospective trial
.
Ann Surg
.
1986
;
203
(
1
):
13
20
.
14.
Yang
J
,
Chi
Y
,
Burkhardt
BR
,
Guan
Y
,
Wolf
BA
.
Leucine metabolism in regulation of insulin secretion from pancreatic beta cells
.
Nutr Rev
.
2010
;
68
(
5
):
270
9
.
15.
Zhang
Y
,
Guo
K
,
LeBlanc
RE
,
Loh
D
,
Schwartz
GJ
,
Yu
Y-H
.
Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms
.
Diabetes
.
2007
;
56
(
6
):
1647
54
.
16.
Nishimura
J
,
Masaki
T
,
Arakawa
M
,
Seike
M
,
Yoshimatsu
H
.
Isoleucine prevents the accumulation of tissue triglycerides and upregulates the expression of PPARalpha and uncoupling protein in diet-induced obese mice
.
J Nutr
.
2010
;
140
(
3
):
496
500
.
17.
Macotela
Y
,
Emanuelli
B
,
Bång
AM
,
Espinoza
DO
,
Boucher
J
,
Beebe
K
, et al
.
Dietary leucine-an environmental modifier of insulin resistance acting on multiple levels of metabolism
.
PLoS One
.
2011
;
6
(
6
):
e21187
.
18.
Nagata
C
,
Nakamura
K
,
Wada
K
,
Tsuji
M
,
Tamai
Y
,
Kawachi
T
.
Branched-chain amino acid intake and the risk of diabetes in a Japanese community: the Takayama study
.
Am J Epidemiol
.
2013
;
178
(
8
):
1226
32
.
19.
Cocate
P
,
Natali
A
,
de Oliveira
A
,
Alfenas
R
,
Hermsdorff
H
.
Consumption of branched-chain amino acids is inversely associated with central obesity and cardiometabolic features in a population of Brazilian middle-aged men: potential role of leucine intake
.
J Nutr Health Aging
.
2015
;
19
(
7
):
771
7
.
20.
Jennings
A
,
MacGregor
A
,
Pallister
T
,
Spector
T
,
Cassidy
A
.
Associations between branched chain amino acid intake and biomarkers of adiposity and cardiometabolic health independent of genetic factors: a twin study
.
Int J Cardiol
.
2016
;
223
:
992
8
.
21.
Zhao
H
,
Zhang
F
,
Sun
D
,
Wang
X
,
Zhang
X
,
Zhang
J
, et al
.
Branched-chain amino acids exacerbate obesity-related hepatic glucose and lipid metabolic disorders via attenuating Akt2 signaling
.
Diabetes
.
2020
;
69
(
6
):
1164
77
.
22.
de Onis
M
,
Onyango
AW
,
Borghi
E
,
Siyam
A
,
Nishida
C
,
Siekmann
J
.
Development of a WHO growth reference for school-aged children and adolescents
.
Bull World Health Organ
.
2007
;
85
(
09
):
660
7
.
23.
Kelishadi
R
,
Majdzadeh
R
,
Motlagh
M-E
,
Heshmat
R
,
Aminaee
T
,
Ardalan
G
, et al
.
Development and evaluation of a questionnaire for assessment of determinants of weight disorders among children and adolescents: the Caspian-IV study
.
Int J Prev Med
.
2012
;
3
(
10
):
699
705
.
24.
Matthews
DR
,
Hosker
J
,
Rudenski
A
,
Naylor
B
,
Treacher
D
,
Turner
R
.
Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man
.
Diabetologia
.
1985
;
28
(
7
):
412
9
.
25.
Zimmet
P
,
Alberti
G
,
Kaufman
F
,
Tajima
N
,
Silink
M
,
Arslanian
S
, et al
.
The metabolic syndrome in children and adolescents
.
Lancet
.
2007
;
369
(
9579
):
2059
61
.
26.
Keskin
M
,
Kurtoglu
S
,
Kendirci
M
,
Atabek
ME
,
Yazici
C
.
Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents
.
Pediatrics
.
2005
;
115
(
4
):
e500
3
.
27.
Prince
RL
,
Kuk
JL
,
Ambler
KA
,
Dhaliwal
J
,
Ball
GD
.
Predictors of metabolically healthy obesity in children
.
Diabetes Care
.
2014
;
37
(
5
):
1462
8
.
28.
Kowalski
KC
,
Crocker
PR
,
Donen
RM
.
The Physical Activity Questionnaire for older Children (PAQ-C) and Adolescents (PAQ-A) manual
. College of Kinesiology, University of Saskatchewan.
2004
;
87
(
1
):
1
38
.
29.
Garmaroudi
GR
,
Moradi
A
.
Socio-economic status in Iran: a study of measurement index
.
Payesh Heal Monit
.
2010
;
9
(
2
):
137
44
.
30.
Katzmarzyk
PT
,
Barreira
TV
,
Broyles
ST
,
Champagne
CM
,
Chaput
JP
,
Fogelholm
M
, et al
.
Relationship between lifestyle behaviors and obesity in children ages 9–11: results from a 12-country study
.
Obesity
.
2015
;
23
(
8
):
1696
702
.
31.
Primeau
V
,
Coderre
L
,
Karelis
A
,
Brochu
M
,
Lavoie
M
,
Messier
V
, et al
.
Characterizing the profile of obese patients who are metabolically healthy
.
Int J Obes
.
2011
;
35
(
7
):
971
81
.
32.
Schröder
H
,
Ramos
R
,
Baena-Díez
JM
,
Mendez
MA
,
Canal
DJ
,
Fíto
M
, et al
.
Determinants of the transition from a cardiometabolic normal to abnormal overweight/obese phenotype in a Spanish population
.
Eur J Nutr
.
2014
;
53
(
6
):
1345
53
.
33.
Goday
A
,
Calvo
E
,
Vázquez
LA
,
Caveda
E
,
Margallo
T
,
Catalina-Romero
C
, et al
.
Prevalence and clinical characteristics of metabolically healthy obese individuals and other obese/non-obese metabolic phenotypes in a working population: results from the Icaria study
.
BMC Public Health
.
2016
;
16
(
1
):
1
14
.
34.
Chang
Y
,
Ryu
S
,
Suh
B
,
Yun
K
,
Kim
C
,
Cho
S
.
Impact of BMI on the incidence of metabolic abnormalities in metabolically healthy men
.
Int J Obes
.
2012
;
36
(
9
):
1187
94
.
35.
Zhang
L
,
Li
F
,
Guo
Q
,
Duan
Y
,
Wang
W
,
Yang
Y
, et al
.
Different proportions of branched-chain amino acids modulate lipid metabolism in a finishing pig model
.
J Agric Food Chem
.
2021
;
69
(
25
):
7037
48
.
36.
Cummings
NE
,
Williams
EM
,
Kasza
I
,
Konon
EN
,
Schaid
MD
,
Schmidt
BA
, et al
.
Restoration of metabolic health by decreased consumption of branched-chain amino acids
.
J Physiol
.
2018
;
596
(
4
):
623
45
.
37.
Leenders
M
,
Verdijk
LB
,
van der Hoeven
L
,
van Kranenburg
J
,
Hartgens
F
,
Wodzig
WK
, et al
.
Prolonged leucine supplementation does not augment muscle mass or affect glycemic control in elderly type 2 diabetic men
.
J Nutr
.
2011
;
141
(
6
):
1070
6
.
38.
Rao
S
,
Zhang
Y
,
Xie
S
,
Cao
H
,
Zhang
Z
,
Yang
W
.
Dietary intake of Branched-Chain Amino Acids (BCAAs), serum BCAAs, and cardiometabolic risk markers among community-dwelling adults
.
Eur J Nutr
.
2024
;
63
(
5
):
1835
45
.
39.
Polidori
N
,
Grasso
EA
,
Chiarelli
F
,
Giannini
C
.
Amino acid-related metabolic signature in obese children and adolescents
.
Nutrients
.
2022
;
14
(
7
):
1454
.
40.
Perng
W
,
Rifas-Shiman
SL
,
Hivert
MF
,
Chavarro
JE
,
Oken
E
.
Branched chain amino acids, androgen hormones, and metabolic risk across early adolescence: a prospective study in project viva
.
Obesity
.
2018
;
26
(
5
):
916
26
.
41.
Segovia-Siapco
G
,
Khayef
G
,
Pribis
P
,
Oda
K
,
Haddad
E
,
Sabaté
J
.
Animal protein intake is associated with general adiposity in adolescents: the teen food and development study
.
Nutrients
.
2019
;
12
(
1
):
110
.
42.
Okuda
M
,
Sasaki
S
.
Dietary amino acid composition and glycemic biomarkers in Japanese adolescents
.
Nutrients
.
2024
;
16
(
6
):
882
.
43.
Lueders
B
,
Kanney
BC
,
Krone
MJ
,
Gannon
NP
,
Vaughan
RA
.
Effect of branched-chain amino acids on food intake and indicators of hunger and satiety-a narrative summary
.
Hum Nutr Metab
.
2022
;
30
:
200168
.
44.
Nie
C
,
He
T
,
Zhang
W
,
Zhang
G
,
Ma
X
.
Branched chain amino acids: beyond nutrition metabolism
.
Int J Mol Sci
.
2018
;
19
(
4
):
954
.
45.
Iwao
M
,
Gotoh
K
,
Arakawa
M
,
Endo
M
,
Honda
K
,
Seike
M
, et al
.
Supplementation of branched-chain amino acids decreases fat accumulation in the liver through intestinal microbiota-mediated production of acetic acid
.
Sci Rep
.
2020
;
10
(
1
):
18768
.
46.
Sun
H
,
Olson
KC
,
Gao
C
,
Prosdocimo
DA
,
Zhou
M
,
Wang
Z
, et al
.
Catabolic defect of branched-chain amino acids promotes heart failure
.
Circulation
.
2016
;
133
(
21
):
2038
49
.
47.
Prentice
RL
.
Intake biomarkers for nutrition and health: review and discussion of methodology issues
.
Metabolites
.
2024
;
14
(
5
):
276
.
You do not currently have access to this content.