Background: Recently, the triglyceride-glucose (TyG) index has been suggested as a surrogate insulin resistance marker. This index could act as an early screening marker in individuals with a high risk of metabolic syndrome (MS) such as obese subjects. Aims: The objective of this work was to detect the cutoff point of the TyG index for the diagnosis of MS according to ATPIII criteria on obese subjects and to compare with HOMA-IR. Methods: We conducted a cross-sectional study in 1,494 obese subjects. Measurements of adiposity parameters, blood pressure, fasting blood glucose, insulin concentration, insulin resistance (HOMA-IR), lipid profile, C-reactive protein, adipokines, and the prevalence of MS were determined. The TyG index was calculated from the next equation: Ln (fasting triglycerides (mg/dL) × fasting glucose (mg/dL))/2. Results: A total of 1,494 subjects were recruited, 421 males (28.1%) and 1,073 females (71.8%), with an average age of 45.8 ± 15.3 years (range: 29–62). A total of 677 subjects had MS (45.5%) and 817 did not show MS (54.6%). The averages of HOMA-IR and TyG index values increased as the components of MS were aggregated, and both indexes were higher in subjects with MS. The area under the curve (AUC) of the TyG index according to ATPIII criteria showed values of 0.746 (0.721–0.771; p = 0.001). The cutoff point according to the Youden index was 4.72, with sensitivity and specificity of 87% and 88.2%, respectively. For the HOMA-IR, AUC showed values of 0.682 (0.654–0.710; p = 0.01). The cutoff point was 3.23, with sensitivity and specificity of 78% and 70.1%, respectively. Conclusions: The TyG index is more powerful for predicting MS than HOMA-IR in Caucasian obese subjects.

1.
Finucane
MM
,
Stevens
GA
,
Cowan
MJ
,
Danaei
G
,
Lin
JK
,
Paciorek
CJ
,
.
National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants
.
Lancet
.
2011
;
377
(
9765
):
557
67
.
2.
Gutiérrez-Fisac
JL
,
Guallar-Castillón
P
,
León-Muñoz
LM
,
Graciani
A
,
Banegas
JR
,
Rodríguez-Artalejo
F
.
Prevalence of general and abdominal obesity in the adult population of Spain, 2008-2010: the ENRICA study
.
Obes Rev
.
2012
;
13
(
4
):
388
92
.
3.
Expert Panel on Detection Evaluation and Treatment of High Blood Cholesterol in Adults
.
Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III)
.
JAMA
.
2001
;
285
(
19
):
2486
97
.
4.
de Luis
DA
,
Izaola
O
,
Primo
D
,
Aller
R
.
Relation of a variant in adiponectin gene (rs266729) with metabolic syndrome and diabetes mellitus type 2 in adult obese subjects
.
Eur Rev Med Pharmacol Sci
.
2020
;
24
(
20
):
10646
52
.
5.
Lee
S-H
,
Kwon
H-S
,
Park
Y-M
,
Ha
H-S
,
Jeong
SH
,
Yang
HK
,
.
Predicting the development of diabetes using the product of triglycerides and glucose: the Chungju Metabolic Disease Cohort (CMC) study
.
PLoS One
.
2014
;
9
(
2
):
e90430
.
6.
Reaven
GM
.
Role of insulin resistance in human disease
.
Diabetes
.
1988
;
37
(
12
):
1595
607
.
7.
Goldenberg
R
,
Punthakee
Z
.
Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome
.
Can J Diabetes
.
2013
;
37
:
S8
11
.
8.
DeFronzo
RA
,
Tobin
JD
,
Andres
R
.
Glucose clamp technique: a method for quantifying insulin secretion and resistance
.
Am J Physiol
.
1979
;
237
(
3
):
E214
23
.
9.
Bonora
E
,
Formentini
G
,
Calcaterra
F
,
Lombardi
S
,
Marini
F
,
Zenari
L
,
.
HOMA-estimated insulin resistance is an independent predictor of cardiovascular disease in type 2 diabetic subjects
.
Diabetes Care
.
2002
;
25
(
7
):
1135
41
.
10.
Yamada
C
,
Mitsuhashi
T
,
Hiratsuka
N
,
Inabe
F
,
Araida
N
,
Takahashi
E
.
Optimal reference interval for homeostasis model assessment of insulin resistance in a Japanese population
.
J Diabetes Investig
.
2011
;
2
(
5
):
373
6
.
11.
Simental-Mendía
LE
,
Rodríguez-Morán
M
,
Guerrero-Romero
F
.
The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects
.
Metab Syndr Relat Disord
.
2008
;
6
(
4
):
299
304
.
12.
Kelley
DE
,
Goodpaster
BH
.
Skeletal muscle triglyceride
.
Diabetes Care
.
2001
;
24
(
5
):
933
41
.
13.
Low
S
,
Khoo
KCJ
,
Irwan
B
,
Sum
CF
,
Subramaniam
T
,
Lim
SC
,
.
The role of triglyceride glucose index in development of Type 2 diabetes mellitus
.
Diabetes Res Clin Pract
.
2018
;
143
:
43
9
.
14.
Jian
S
,
Su-Mei
N
,
Xue
C
,
Jie
Z
,
Xue-Sen
W
.
Association and interaction between triglyceride-glucose index and obesity on risk of hypertension in middle-aged and elderly adults
.
Clin Exp Hypertens
.
2017
;
39
(
8
):
732
9
.
15.
Sánchez-Íñigo
L
,
Navarro-González
D
,
Fernández-Montero
A
,
Pastrana-Delgado
J
,
Martínez
JA
.
The TyG index may predict the development of cardiovascular events
.
Eur J Clin Invest
.
2016
;
46
(
2
):
189
97
.
16.
da Silva
A
,
Caldas
APS
,
Rocha
DMUP
,
Bressan
J
.
Triglycerideglucose index predicts independently type 2 diabetes mellitus risk: a systematic review and meta-analysis of cohort studies
.
Prim Care Diabetes
.
2020
;
14
(
6
):
584
93
.
17.
Kitae
A
,
Hashimoto
Y
,
Hamaguchi
M
,
Obora
A
,
Kojima
T
,
Fukui
M
.
The triglyceride and glucose index is a predictor of incident nonalcoholic fatty liver disease: a population-based cohort study
.
Can J Gastroenterol Hepatol
.
2019
;
2019
:
1
7
.
18.
Liu
X-C
,
He
G-D
,
Lo
K
,
Huang
Y-Q
,
Feng
Y-Q
.
The triglycerideglucose index, an insulin resistance marker, was non-linear associated with all-cause and cardiovascular mortality in the general population
.
Front Cardiovasc Med
.
2020
;
7
:
628109
.
19.
Lukaski
HC
,
Johnson
PE
,
Bolonchuk
WW
,
Lykken
GI
.
Assessment of fat-free mass using bioelectrical impedance measurements of the human body
.
Am J Clin Nutr
.
1985
;
41
(
4
):
810
7
.
20.
Friedewald
WT
,
Levy
RI
,
Fredrickson
DS
.
Estimation of the concentration of low-density lipoprotein cholesterol in plasma without use of the preparative ultracentrifuge
.
Clin Chem
.
1972
;
18
(
6
):
499
502
.
21.
Matthews
DR
,
Hosker
JP
,
Rudenski
AS
,
Naylor
BA
,
Treacher
DF
,
Turner
RC
.
Homeostasis model assessment: insulin resistance and beta cell function from fasting plasma glucose and insulin concentrations in man
.
Diabetologia
.
1985
;
28
(
7
):
412
9
.
22.
Baek
JH
,
Kim
H
,
Kim
KY
,
Jung
J
.
Insulin resistance and the risk of diabetes and dysglycemia in Korean general adult population
.
Diabetes Metab J
.
2018
;
42
(
4
):
296
307
.
23.
Navarro-Gonzalez
D
,
Sanchez-Iñigo
L
,
Pastrana-Delgado
J
,
Fernandez-Montero
A
,
Martinez
JA
.
Triglyceride-glucose index (TyG index) in comparison with fasting plasma glucose improved diabetes prediction in patients with normal fasting glucose: the vascular-metabolic CUN cohort
.
Prev Med
.
2016
;
86
:
99
105
.
24.
Patel
TP
,
Rawal
K
,
Bagchi
AK
,
Akolkar
G
,
Bernardes
N
,
Dias
DS
,
.
Insulin resistance: an additional risk factor in the pathogenesis of cardiovascular disease in type 2 diabetes
.
Heart Fail Rev
.
2016
;
21
(
1
):
11
23
.
25.
Lebovitz
HE
.
Insulin resistance: definition and consequences
.
Exp Clin Endocrinol Diabetes
.
2001
;
109
(
Suppl 2
):
S135
S148
.
26.
Unger
G
,
Benozzi
SF
,
Perruzza
F
,
Pennacchiotti
GL
.
Triglycerides and glucose index: a useful indicator of insulin resistance
.
Endocrinologia y Nutricion
.
2014
;
61
(
10
):
533
40
.
27.
Ferreira
JRS
,
Zandonade
E
,
de Paula Alves Bezerra
OM
,
Salaroli
LB
.
Cutoff point of TyG index for metabolic syndrome in Brazilian farmers
.
Arch Endocrinol Metab
.
2021
;
65
(
6
):
704
12
.
28.
Qu
C
,
Zhou
X
,
Yang
G
,
Li
L
,
Liu
H
,
Liang
Z
.
The natural logarithm of zinc-α2-glycoprotein/HOMA-IR is a better predictor of insulin sensitivity than the product of triglycerides and glucose and the other lipid ratios
.
Cytokine
.
2016
;
79
:
96
102
.
29.
Moon
S
,
Park
JH
,
Jang
EJ
,
Park
YK
,
Yu
JM
,
Park
JS
,
.
The cut-off values of surrogate measures for insulin sensitivity in a healthy population in korea according to the Korean national health and nutrition examination survey (KNHANES) 2007-2010
.
J Korean Med Sci
.
2018
;
33
(
29
):
e197
.
30.
Roh
E
,
Kim
KM
,
Park
KS
,
Kim
YJ
,
Chun
EJ
,
Choi
SH
,
.
Comparison of pancreatic volume and fat amount linked with glucose homeostasis between healthy Caucasians and Koreans
.
Diabetes Obes Metab
.
2018
;
20
(
11
):
2642
52
.
31.
Kim
JD
,
Lee
WY
.
Insulin secretory capacity and insulin resistance in Korean type 2 diabetes mellitus patients
.
Endocrinol Metab
.
2016
;
31
(
3
):
354
60
.
32.
Lee
DY
,
Lee
ES
,
Kim
JH
,
Park
SE
,
Park
C-Y
,
Oh
K-W
,
.
Predictive value of triglyceride glucose index for the risk of incident diabetes: a 4-year retrospective longitudinal study
.
PLoS One
.
2016
;
11
(
9
):
e0163465
.
33.
Pranata
R
,
Huang
I
,
Irvan
,
Lim
MA
,
Vania
R
.
The association between triglyceride-glucose index and the incidence of type 2 diabetes mellitus-a systematic review and dose-response meta-analysis of cohort studies
.
Endocrine
.
2021
;
74
:
254
62
.
34.
Robertson
RP
,
Harmon
J
,
Tran
POT
,
Poitout
V
.
β-Cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes
.
Diabetes
.
2004
;
53
(
Suppl 1
):
S119
24
.
35.
Lee
YJ
,
Song
S
,
Song
Y
.
High-carbohydrate diets and food patterns and their associations with metabolic disease in the Korean population
.
Yonsei Med J
.
2018
;
59
(
7
):
834
42
.
36.
Fernández-Aparicio
Á
,
Perona
JS
,
Schmidt-RioValle
J
,
Padez
C
,
González-Jiménez
E
.
Assessment of Different Atherogenic Indices as Predictors of Metabolic Syndrome in Spanish Adolescents
.
Biol Res Nurs
.
2022
;
24
(
2
):
163
171
.
37.
García
AG
,
Urbina Treviño
MV
,
Villalpando Sánchez
DC
,
Aguilar
CA
.
Diagnostic accuracy of triglyceride/glucose and triglyceride/HDL index as predictors for insulin resistance in children with and without obesity
.
Diabetes Metab Syndr Clin Res Rev
.
2019
;
13
(
4
):
2329
34
.
You do not currently have access to this content.