This review discussed and in particular emphasis the potential cellular pathways and the biological processes involved that lead to homocysteine-induced endothelial dysfunction, in particular in the impaired endothelial dependent dilatation aspect. Hyperhomocysteinemia is an independent cardiovascular risk factor that has been associated with atherosclerotic vascular diseases and ischemic heart attacks. The potential mechanisms by which elevated plasma homocysteine level leads to reduction in nitric oxide bioavailability include the disruptive uncoupling of nitric oxide synthase activity and quenching of nitric oxide by oxidative stress, the enzymatic inhibition by asymmetric dimethylarginine, endoplasmic reticulum stress with eventual endothelial cell apoptosis, and chronic inflammation/prothrombotic conditions. Homocysteine-induced endothelial dysfunction presumably affecting the bioavailability of the potent vasodilator ‘nitric oxide', and such dysfunction can easily be monitor by flow-mediated dilation method using ultrasound. Understanding the mechanisms by which plasma homocysteine alter endothelial nitric oxide production is therefore essential in the comprehension of homocysteine-induced impairment of endothelial dependent dilatation, and its association of cardiovascular risk and its pathophysiology.

1.
Elhawary NA, Hewedi D, Arab A, Teama S, Shaibah H, Tayeb MT, Bogari N: The MTHFR 677T allele may influence the severity and biochemical risk factors of Alzheimer's disease in an Egyptian population. Dis Markers 2013;35:439-446.
2.
McCully KS: Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 1969;56:111-128.
3.
Arnesen E, Refsum H, Bonaa KH, Ueland PM, Forde OH, Nordrehaug JE: Serum total homocysteine and coronary heart disease. Int J Epidemiol 1995;24:704-709.
4.
Homocysteine Studies Collaboration: Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 2002;288:2015-2022.
5.
Graham IM, Daly LE, Refsum HM, Robinson K, Brattstrom LE, Ueland PM, Palma-Reis RJ, Boers GH, Sheahan RG, Israelsson B, Uiterwaal CS, Meleady R, McMaster D, Verhoef P, Witteman J, Rubba P, Bellet H, Wautrecht JC, de Valk HW, Sales Luis AC, Parrot-Rouland FM, Tan KS, Higgins I, Garcon D, Medrano MJ, Candito M, Evans AE, Andria G: Plasma homocysteine as a risk factor for vascular disease. The European concerted action project. JAMA 1997;277:1775-1781.
6.
den Heijer M, Rosendaal FR, Blom HJ, Gerrits WB, Bos GM: Hyperhomocysteinemia and venous thrombosis: a meta-analysis. Thromb Haemost 1998;80:874-877.
7.
Cheng Z, Yang X, Wang H: Hyperhomocysteinemia and endothelial dysfunction. Curr Hypertens Rev 2009;5:158-165.
8.
Boushey CJ, Beresford SAA, Omenn GS, Motulsky AG: A meta-analysis of plasma homocysteine as a risk factor for arteriosclerotic vascular disease and the potential preventive role of folic acid. Dev Cardiovasc Med 1997;196:245-249.
9.
Selhub J: Homocysteine metabolism. Annu Rev Nutr 1999;19:217-246.
10.
Woo KS, Chook P, Lolin YI, Sanderson JE, Metreweli C, Celermajer DS: Folic acid improves arterial endothelial function in adults with hyperhomocystinemia. J Am Coll Cardiol 1999;34:2002-2006.
11.
Bellamy MF, McDowell IF, Ramsey MW, Brownlee M, Newcombe RG, Lewis MJ: Oral folate enhances endothelial function in hyperhomocysteinaemic subjects. Eur J Clin Invest 1999;29:659-662.
12.
Liu Y, Tian T, Zhang H, Gao L, Zhou X: The effect of homocysteine-lowering therapy with folic acid on flow-mediated vasodilation in patients with coronary artery disease: a meta-analysis of randomized controlled trials. Atherosclerosis 2014;235:31-35.
13.
McCully KS: Homocysteine and the pathogenesis of atherosclerosis. Expert Rev Clin Pharmacol 2015;8:211-219.
14.
Toole JF, Malinow MR, Chambless LE, Spence JD, Pettigrew LC, Howard VJ, Sides EG, Wang CH, Stampfer M: Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the vitamin intervention for stroke prevention (VISP) randomized controlled trial. JAMA 2004;291:565-575.
15.
Towfighi A, Arshi B, Markovic D, Ovbiagele B: Homocysteine-lowering therapy and risk of recurrent stroke, myocardial infarction and death: the impact of age in the VISP trial. Cerebrovasc Dis 2014;37:263-267.
16.
Zhang W, He H, Wang H, Wang S, Li X, Liu Y, Jiang H, Jiang H, Yan Y, Wang Y, Liu X: Activation of transsulfuration pathway by salvianolic acid a treatment: a homocysteine-lowering approach with beneficial effects on redox homeostasis in high-fat diet-induced hyperlipidemic rats. Nutr Metab (Lond) 2013;10:68.
17.
Cao Y, Chai JG, Chen YC, Zhao J, Zhou J, Shao JP, Ma C, Liu XD, Liu XQ: Beneficial effects of danshensu, an active component of salvia miltiorrhiza, on homocysteine metabolism via the trans-sulphuration pathway in rats. Br J Pharmacol 2009;157:482-490.
18.
Herbig K, Chiang EP, Lee LR, Hills J, Shane B, Stover PJ: Cytoplasmic serine hydroxymethyltransferase mediates competition between folate-dependent deoxyribonucleotide and S-adenosylmethionine biosyntheses. J Biol Chem 2002;277:38381-38389.
19.
Refsum H, Guttormsen AB, Fiskerstrand T, Ueland PM: On the formation and fate of total plasma homocysteine. Dev Cardiovasc Med 1997;196:23-29.
20.
Chen P, Poddar R, Tipa EV, Dibello PM, Moravec CD, Robinson K, Green R, Kruger WD, Garrow TA, Jacobsen DW: Homocysteine metabolism in cardiovascular cells and tissues: implications for hyperhomocysteinemia and cardiovascular disease. Adv Enzyme Regul 1999;39:93-109.
21.
Ganguly P, Alam SF: Role of homocysteine in the development of cardiovascular disease. Nutr J 2015;14:6.
22.
Stankevicius E, Kevelaitis E, Vainorius E, Simonsen U: [Role of nitric oxide and other endothelium-derived factors]. Medicina (Kaunas) 2003;39:333-341.
23.
Deanfield J, Donald A, Ferri C, Giannattasio C, Halcox J, Halligan S, Lerman A, Mancia G, Oliver JJ, Pessina A, et al; Working Group on Endothelin and Endothelial Factors of the European Society of Hypertension: Endothelial function and dysfunction. Part I: methodological issues for assessment in the different vascular beds: a statement by the working group on endothelin and endothelial factors of the European society of hypertension. J Hypertens 2005;23:7-17.
24.
Kolodziejczyk J, Malinowska J, Nowak P, Olas B: Comparison of the effect of homocysteine and its thiolactone on the fibrinolytic system using human plasma and purified plasminogen. Mol Cell Biochem 2010;344:217-220.
25.
Jin L, Caldwell RB, Li-Masters T, Caldwell RW: Homocysteine induces endothelial dysfunction via inhibition of arginine transport. J Physiol Pharmacol 2007;58:191-206.
26.
Topal G, Brunet A, Millanvoye E, Boucher JL, Rendu F, Devynck MA, David-Dufilho M: Homocysteine induces oxidative stress by uncoupling of no synthase activity through reduction of tetrahydrobiopterin. Free Radic Biol Med 2004;36:1532-1541.
27.
Hayden MR, Tyagi SC: Homocysteine and reactive oxygen species in metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: the pleiotropic effects of folate supplementation. Nutr J 2004;3:4.
28.
Lai C: The value of ultrasonographic measurement of flow mediated dilatation. OMICS J Radiol 2014;2:1.
29.
McDowell IF, Lang D: Homocysteine and endothelial dysfunction: a link with cardiovascular disease. J Nutr 2000;130(2S suppl):369S-372S.
30.
Jacobsen DW: Hyperhomocysteinemia and oxidative stress: time for a reality check? Arterioscler Thromb Vasc Biol 2000;20:1182-1184.
31.
McCully KS: Chemical pathology of homocysteine. IV. Excitotoxicity, oxidative stress, endothelial dysfunction, and inflammation. Ann Clin Lab Sci 2009;39:219-232.
32.
Tyagi N, Sedoris KC, Steed M, Ovechkin AV, Moshal KS, Tyagi SC: Mechanisms of homocysteine-induced oxidative stress. Am J Physiol Heart Circ Physiol 2005;289:H2649-H2656.
33.
Sipkens JA, Hahn N, van den Brand CS, Meischl C, Cillessen SA, Smith DE, Juffermans LJ, Musters RJ, Roos D, Jakobs C, Blom HJ, Smulders YM, Krijnen PA, Stehouwer CD, Rauwerda JA, van Hinsbergh VW, Niessen HW: Homocysteine-induced apoptosis in endothelial cells coincides with nuclear NOX2 and peri-nuclear NOX4 activity. Cell Biochem Biophys 2013;67:341-352.
34.
Taniyama Y, Griendling KK: Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 2003;42:1075-1081.
35.
Violi F, Pignatelli P, Pignata C, Plebani A, Rossi P, Sanguigni V, Carnevale R, Soresina A, Finocchi A, Cirillo E, Catasca E, Angelico F, Loffredo L: Reduced atherosclerotic burden in subjects with genetically determined low oxidative stress. Arterioscler Thromb Vasc Biol 2013;33:406-412.
36.
Bermudez V, Bermudez F, Acosta G, Acosta A, Anez J, Andara C, Leal E, Cano C, Manuel V, Hernandez R, Israili Z: Molecular mechanisms of endothelial dysfunction: from nitric oxide synthesis to adma inhibition. Am J Ther 2008;15:326-333.
37.
Forstermann U, Munzel T: Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 2006;113:1708-1714.
38.
Endemann DH, Schiffrin EL: Endothelial dysfunction. J Am Soc Nephrol 2004;15:1983-1992.
39.
Milstien S, Katusic Z: Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function. Biochem Biophys Res Commun 1999;263:681-684.
40.
Bir SC, Kolluru GK, Fang K, Kevil CG: Redox balance dynamically regulates vascular growth and remodeling. Semin Cell Dev Biol 2012;23:745-757.
41.
Zhang X, Li H, Jin H, Ebin Z, Brodsky S, Goligorsky MS: Effects of homocysteine on endothelial nitric oxide production. Am J Physiol Renal Physiol 2000;279:F671-F678.
42.
Frey D, Braun O, Briand C, Vasak M, Grutter MG: Structure of the mammalian NOS regulator dimethylarginine dimethylaminohydrolase: a basis for the design of specific inhibitors. Structure 2006;14:901-911.
43.
Leiper JM, Vallance P: The synthesis and metabolism of asymmetric dimethylarginine (ADMA). Eur J Clin Pharmacol 2006;62:33-38.
44.
Boger RH, Bode-Boger SM, Tsao PS, Lin PS, Chan JR, Cooke JP: An endogenous inhibitor of nitric oxide synthase regulates endothelial adhesiveness for monocytes. J Am Coll Cardiol 2000;36:2287-2295.
45.
Stuhlinger MC, Tsao PS, Her JH, Kimoto M, Balint RF, Cooke JP: Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine. Circulation 2001;104:2569-2575.
46.
Dayoub H, Achan V, Adimoolam S, Jacobi J, Stuehlinger MC, Wang BY, Tsao PS, Kimoto M, Vallance P, Patterson AJ, Cooke JP: Dimethylarginine dimethylaminohydrolase regulates nitric oxide synthesis: genetic and physiological evidence. Circulation 2003;108:3042-3047.
47.
Jia SJ, Lai YQ, Zhao M, Gong T, Zhang BK: Homocysteine-induced hypermethylation of DDAH2 promoter contributes to apoptosis of endothelial cells. Pharmazie 2013;68:282-286.
48.
Palm F, Onozato ML, Luo Z, Wilcox CS: Dimethylarginine dimethylaminohydrolase (DDAH): expression, regulation, and function in the cardiovascular and renal systems. Am J Physiol Heart Circ Physiol 2007;293:H3227-H3245.
49.
Austin RC, Lentz SR, Werstuck GH: Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ 2004;11(suppl 1):S56-S64.
50.
Schroder M, Kaufman RJ: ER stress and the unfolded protein response. Mutat Res 2005;569:29-63.
51.
Walter P, Ron D: The unfolded protein response: from stress pathway to homeostatic regulation. Science 2011;334:1081-1086.
52.
Zhang C, Cai Y, Adachi MT, Oshiro S, Aso T, Kaufman RJ, Kitajima S: Homocysteine induces programmed cell death in human vascular endothelial cells through activation of the unfolded protein response. J Biol Chem 2001;276:35867-35874.
53.
Skurk C, Walsh K: Death receptor induced apoptosis: a new mechanism of homocysteine-mediated endothelial cell cytotoxicity. Hypertension 2004;43:1168-1170.
54.
Hossain GS, van Thienen JV, Werstuck GH, Zhou J, Sood SK, Dickhout JG, de Koning AB, Tang D, Wu D, Falk E, Poddar R, Jacobsen DW, Zhang K, Kaufman RJ, Austin RC: TDAG51 is induced by homocysteine, promotes detachment-mediated programmed cell death, and contributes to the development of atherosclerosis in hyperhomocysteinemia. J Biol Chem 2003;278:30317-30327.
55.
Oyadomari S, Mori M: Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 2004;11:381-389.
56.
Jakubowski H: Pathophysiological consequences of homocysteine excess. J Nutr 2006;136(6 suppl):1741S-1749S.
57.
Jakubowski H: Homocysteine thiolactone: metabolic origin and protein homocysteinylation in humans. J Nutr 2000;130(2S suppl):377S-381S.
58.
Perla-Kajan J, Twardowski T, Jakubowski H: Mechanisms of homocysteine toxicity in humans. Amino Acids 2007;32:561-572.
59.
Jakubowski H: The pathophysiological hypothesis of homocysteine thiolactone-mediated vascular disease. J Physiol Pharmacol 2008;59(suppl 9):155-167.
60.
Jakubowski H, Zhang L, Bardeguez A, Aviv A: Homocysteine thiolactone and protein homocysteinylation in human endothelial cells: implications for atherosclerosis. Circ Res 2000;87:45-51.
61.
Mercie P, Garnier O, Lascoste L, Renard M, Closse C, Durrieu F, Marit G, Boisseau RM, Belloc F: Homocysteine-thiolactone induces caspase-independent vascular endothelial cell death with apoptotic features. Apoptosis 2000;5:403-411.
62.
Durand P, Lussier-Cacan S, Blache D: Acute methionine load-induced hyperhomocysteinemia enhances platelet aggregation, thromboxane biosynthesis, and macrophage-derived tissue factor activity in rats. Faseb J 1997;11:1157-1168.
63.
Hofmann MA, Lalla E, Lu Y, Gleason MR, Wolf BM, Tanji N, Ferran LJ Jr, Kohl B, Rao V, Kisiel W, Stern DM, Schmidt AM: Hyperhomocysteinemia enhances vascular inflammation and accelerates atherosclerosis in a murine model. J Clin Invest 2001;107:675-683.
64.
Akalin A, Alatas O, Colak O: Relation of plasma homocysteine levels to atherosclerotic vascular disease and inflammation markers in type 2 diabetic patients. Eur J Endocrinol 2008;158:47-52.
65.
Omae T, Nagaoka T, Tanano I, Yoshida A: Homocysteine inhibition of endothelium-dependent nitric oxide-mediated dilation of porcine retinal arterioles via enhanced superoxide production. Invest Ophthalmol Vis Sci 2013;54:2288-2295.
66.
Pang X, Liu J, Zhao J, Mao J, Zhang X, Feng L, Han C, Li M, Wang S, Wu D: Homocysteine induces the expression of C-reactive protein via NMDAr-ROS-MAPK-NF-κB signal pathway in rat vascular smooth muscle cells. Atherosclerosis 2014;236:73-81.
67.
Durga J, van Tits LJ, Schouten EG, Kok FJ, Verhoef P: Effect of lowering of homocysteine levels on inflammatory markers: a randomized controlled trial. Arch Intern Med 2005;165:1388-1394.
68.
Dayal S, Wilson KM, Leo L, Arning E, Bottiglieri T, Lentz SR: Enhanced susceptibility to arterial thrombosis in a murine model of hyperhomocysteinemia. Blood 2006;108:2237-2243.
69.
Undas A, Brozek J, Szczeklik A: Homocysteine and thrombosis: from basic science to clinical evidence. Thromb Haemost 2005;94:907-915.
70.
Sauls DL, Lockhart E, Warren ME, Lenkowski A, Wilhelm SE, Hoffman M: Modification of fibrinogen by homocysteine thiolactone increases resistance to fibrinolysis: a potential mechanism of the thrombotic tendency in hyperhomocysteinemia. Biochemistry 2006;45:2480-2487.
71.
Tamura Y, Inoue A, Ijiri Y, Naemura A, Yamamoto J: Short- and long-term treatment with folic acid suppresses thrombus formation in atherogenic mice in vivo. Pathophysiology 2014;21:169-175.
72.
Vermeulen EG, Stehouwer CD, Twisk JW, van den Berg M, de Jong SC, Mackaay AJ, van Campen CM, Visser FC, Jakobs CA, Bulterjis EJ, Rauwerda JA: Effect of homocysteine-lowering treatment with folic acid plus vitamin B6 on progression of subclinical atherosclerosis: a randomised, placebo-controlled trial. Lancet 2000;355:517-522.
73.
Welch GN, Loscalzo J: Homocysteine and atherothrombosis. N Engl J Med 1998;338:1042-1050.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.