The purpose of this study was to investigate the effects of green tea catechin on polymorphonuclear leukocyte 5′-lipoxygenase activity, leukotriene B4 synthesis, and renal damage in diabetic rats. Male Sprague-Dawley rats weighing 100 ± 10 g were randomly assigned to 1 normal group and 3 diabetic groups given a catechin-free diet (DM-0C group), 0.25% catechin diet (DM-0.25C group), or 0.5% catechin diet (DM-0.5C group), respectively. 5′-Lipoxygenase activity in the polymorphonuclear leukocytes significantly increased by 54% in the DM-0C group compared to the normal group, while the level in the DM-0.5C group remained the same as in the normal group. The leukotriene B4 content in the polymorphonuclear leukocytes increased 55% in the DM-0C group compared to the normal group, whereas the DM-0.25C and DM-0.5C groups exhibited the same level as the normal group. The superoxide radical content in the kidney microsomes increased 116% in the DM-0C group when compared to the normal group, yet decreased 29% in the DM-0.25C group and 50% in the DM-0.5C group compared to DM-0C group. The lipofuscin content was 197 and 136% higher in the DM-0C and DM-025C groups, respectively, than in the normal group, whereas the DM-0.5C group exhibited the same content as in the normal group. The carbonyl value increased 118% in the DM-0C group compared to the normal group, and the DM-0.25C and DM-0.5C groups were not significantly different from the DM-0C group. Accordingly, these results indicate that dietary catechin inhibited the generation of superoxide radicals, oxidized protein, and lipid peroxide in the kidney of streptozotocin-induced diabetic rats. Furthermore, green tea catechin supplementation in diabetic rats also appeared to inhibit the production of leukotriene B4 based on regulating the activity of 5′-lipoxygenase, thereby potentially reducing renal oxidative damage and inflammatory reactions.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.