The analysis of change is central to the study of kidney research. In the past 25 years, newer and more sophisticated methods for the analysis of change have been developed; however, as of yet these newer methods are underutilized in the field of kidney research. Repeated measures ANOVA is the traditional model that is easy to understand and simpler to interpret, but it may not be valid in complex real-world situations. Problems with the assumption of sphericity, unit of analysis, lack of consideration for different types of change, and missing data, in the repeated measures ANOVA context are often encountered. Multilevel modeling, a newer and more sophisticated method for the analysis of change, overcomes these limitations and provides a better framework for understanding the true nature of change. The present article provides a primer on the use of multilevel modeling to study change. An example from a clinical study is detailed and the method for implementation in SAS is provided.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.