Introduction: Little is known about the biofluid specificity of microRNAs (miRNAs) in systemic lupus erythematosus (SLE) and the biofluid influence on miRNA diagnosis and prognosis accuracy. Our aim was to analyze the effect of biofluid on miRNA expression and to identify a specific miRNA profile in plasma exosomes related to SLE activity, renal damage, and disease flares over a 60-month follow-up period. Methods: Noncoding RNA-sequencing analysis was used to determine miRNA in plasma and plasma exosomes in a discovery cohort of SLE patients and controls. Potential miRNAs were selected based on the differential expression between biofluids and were validated by quantitative polymerase chain reaction in a higher validation cohort. Results: From the small RNA sequencing, the 25 miRNAs with the highest fold-change expression between biofluids were identified. Nine miRNAs were validated in a larger cohort (n = 115, of whom 30 had nephritis) and were found to be increased in exosomal fraction and patient groups. Further analysis revealed a panel combining three miRNAs for lupus nephritis diagnosis (miR-101-3p, miR-144-5p, and miR-15a-5p) gave an area under the curve that improves the readout of the single miRNAs (0.964, p < 0.0001). However, only miR-15a-5p had a strong discriminatory power of renal injury between patients (0.81, p < 0.0001). Finally, exosomal miR-15a-5p was associated with histological features, chronicity index and flares (odds ratio 4.24, p < 0.001), high levels being a strong independent predictor of 60-month follow-up flares (hazard ratio 4.24, p < 0.001). Conclusion: This novelty study demonstrated a biofluid exosome specificity of miRNA profile related to SLE with nephritis, highlighting exosomal miR-15a-5p levels with a strong association with proteinuria, renal histological features, and high accuracy in the diagnosis of renal damage and detection of lupus flares. The detection of altered miRNAs levels in exosome-enriched fraction improved the diagnostic accuracy of renal damage in SLE.

1.
Tsokos
GC
,
Lo
MS
,
Costa Reis
P
,
Sullivan
KE
.
New insights into the immunopathogenesis of systemic lupus erythematosus
.
Nat Rev Rheumatol
.
2016
;
12
:
716
30
.
2.
Pisetsky
DS
,
Lipsky
PE
.
New insights into the role of antinuclear antibodies in systemic lupus erythematosus
.
Nat Rev Rheumatol
.
2020
;
16
(
10
):
565
79
.
3.
Tian
J
,
Zhang
D
,
Yao
X
,
Huang
Y
,
Lu
Q
.
Global epidemiology of systemic lupus erythematosus: a comprehensive systematic analysis and modelling study
.
Ann Rheum Dis
.
2023
;
82
(
3
):
351
6
.
4.
Mathivanan
S
,
Ji
H
,
Simpson
RJ
.
Exosomes: extracellular organelles important in intercellular communication
.
J Proteomics
.
2010
;
73
(
10
):
1907
20
.
5.
van Niel
G
,
D'Angelo
G
,
Raposo
G
.
Shedding light on the cell biology of extracellular vesicles
.
Nat Rev Mol Cell Biol
.
2018
;
19
(
4
):
213
28
.
6.
Claßen
L
,
Tykocinski
LO
,
Wiedmann
F
,
Birr
C
,
Schiller
P
,
Tucher
C
, et al
.
Extracellular vesicles mediate intercellular communication: transfer of functionally active microRNAs by microvesicles into phagocytes
.
Eur J Immunol
.
2017
;
47
(
9
):
1535
49
.
7.
Miao
C
,
Wang
X
,
Zhou
W
,
Huang
J
.
The emerging roles of exosomes in autoimmune diseases, with special emphasis on microRNAs in exosomes
.
Pharmacol Res
.
2021
;
169
:
105680
.
8.
Xu
H
,
Jia
S
,
Xu
H
.
Potential therapeutic applications of exosomes in different autoimmune diseases
.
Clin Immunol
.
2019
;
205
:
116
24
.
9.
Ortega
A
,
Martinez-Arroyo
O
,
Forner
MJ
,
Cortes
R
.
Exosomes as drug delivery systems: endogenous nanovehicles for treatment of systemic lupus erythematosus
.
Pharmaceutics
.
2020
;
13
(
1
):
3
.
10.
Lindenbergh
MFS
,
Wubbolts
R
,
Borg
EGF
,
van ‘t Veld
EM
,
Boes
M
,
Stoorvogel
W
.
Dendritic cells release exosomes together with phagocytosed pathogen; potential implications for the role of exosomes in antigen presentation
.
J Extracell Vesicles
.
2020
;
9
(
1
):
1798606
.
11.
Fu
C
,
Peng
P
,
Loschko
J
,
Feng
L
,
Pham
P
,
Cui
W
, et al
.
Plasmacytoid dendritic cells cross-prime naive CD8 T cells by transferring antigen to conventional dendritic cells through exosomes
.
Proc Natl Acad Sci U S A
.
2020
;
117
(
38
):
23730
41
.
12.
Lee
JY
,
Park
JK
,
Lee
EY
,
Lee
EB
,
Song
YW
.
Circulating exosomes from patients with systemic lupus erythematosus induce an proinflammatory immune response
.
Arthritis Res Ther
.
2016
;
18
(
1
):
264
.
13.
Driedonks
TAP
,
Nolte-'t Hoen
ENM
.
Circulating Y-RNAs in extracellular vesicles and ribonucleoprotein complexes; implications for the immune system
.
Front Immunol
.
2018
;
9
:
3164
.
14.
Karimi
B
,
Dehghani Firoozabadi
A
,
Peymani
M
,
Ghaedi
K
.
Circulating long noncoding RNAs as novel bio-tools: focus on autoimmune diseases
.
Hum Immunol
.
2022
;
83
(
8–9
):
618
27
.
15.
Salvi
V
,
Gianello
V
,
Busatto
S
,
Bergese
P
,
Andreoli
L
,
D'Oro
U
, et al
.
Exosome-delivered microRNAs promote IFN-alpha secretion by human plasmacytoid DCs via TLR7
.
JCI Insight
.
2018
;
3
(
10
):
e98204
.
16.
Flores-Chova
A
,
Martinez-Arroyo
O
,
Riffo-Campos
AL
,
Ortega
A
,
Forner
MJ
,
Cortes
R
.
Plasma exosomal non-coding RNA profile associated with renal damage reveals potential therapeutic targets in lupus nephritis
.
Int J Mol Sci
.
2023
;
24
(
8
):
7088
.
17.
Tan
L
,
Zhao
M
,
Wu
H
,
Zhang
Y
,
Tong
X
,
Gao
L
, et al
.
Downregulated serum exosomal miR-451a expression correlates with renal damage and its intercellular communication role in systemic lupus erythematosus
.
Front Immunol
.
2021
;
12
:
630112
.
18.
Solé
C
,
Moliné
T
,
Vidal
M
,
Ordi-Ros
J
,
Cortés-Hernández
J
.
An exosomal urinary miRNA signature for early diagnosis of renal fibrosis in lupus nephritis
.
Cells
.
2019
;
8
:
773
.
19.
Perez-Hernandez
J
,
Martinez-Arroyo
O
,
Ortega
A
,
Galera
M
,
Solis-Salguero
MA
,
Chaves
FJ
, et al
.
Urinary exosomal miR-146a as a marker of albuminuria, activity changes and disease flares in lupus nephritis
.
J Nephrol
.
2021
;
34
(
4
):
1157
67
.
20.
Garcia-Vives
E
,
Solé
C
,
Moliné
T
,
Vidal
M
,
Agraz
I
,
Ordi-Ros
J
, et al
.
The urinary exosomal miRNA expression profile is predictive of clinical response in lupus nephritis
.
Int J Mol Sci
.
2020
;
21
(
4
):
1372
.
21.
Floege
J
,
Barbour
SJ
,
Cattran
DC
,
Hogan
JJ
,
Nachman
PH
,
Tang
SCW
, et al
.
Management and treatment of glomerular diseases (part 1): conclusions from a kidney disease: improving global outcomes (KDIGO) controversies conference
.
Kidney Int
.
2019
;
95
(
2
):
268
80
.
22.
Bajema
IM
,
Wilhelmus
S
,
Alpers
CE
,
Bruijn
JA
,
Colvin
RB
,
Cook
HT
, et al
.
Revision of the International Society of Nephrology/Renal Pathology Society classification for lupus nephritis: clarification of definitions, and modified National Institutes of Health activity and chronicity indices
.
Kidney Int
.
2018
;
93
(
4
):
789
96
.
23.
Petri
M
,
Genovese
M
,
Engle
E
,
Hochberg
M
.
Definition, incidence, and clinical description of flare in systemic lupus erythematosus. A prospective cohort study
.
Arthritis Rheum
.
1991
;
34
(
8
):
937
44
.
24.
Liao
Y
,
Smyth
GK
,
Shi
W
.
featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
.
Bioinformatics
.
2014
;
30
(
7
):
923
30
.
25.
Dobin
A
,
Davis
CA
,
Schlesinger
F
,
Drenkow
J
,
Zaleski
C
,
Jha
S
, et al
.
STAR: ultrafast universal RNA-seq aligner
.
Bioinformatics
.
2013
;
29
(
1
):
15
21
.
26.
Love
MI
,
Huber
W
,
Anders
S
.
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
.
Genome Biol
.
2014
;
15
(
12
):
550
.
27.
Ji
J
,
He
Q
,
Xia
Y
,
Sha
X
,
Liang
Q
,
Xu
Y
, et al
.
Circulating plasma derived exosomes from systemic lupus erythematosus aggravate lupus nephritis through miR-122-5p/FOXO3-mediated macrophage activation
.
J Nanobiotechnology
.
2024
;
22
(
1
):
779
.
28.
Chen
F
,
Shi
B
,
Liu
W
,
Gong
J
,
Gao
J
,
Sun
Y
, et al
.
Circulating exosomal microRNAs as biomarkers of lupus nephritis
.
Front Immunol
.
2023
;
14
:
1326836
.
29.
Cardenas-Gonzalez
M
,
Srivastava
A
,
Pavkovic
M
,
Bijol
V
,
Rennke
HG
,
Stillman
IE
, et al
.
Identification, confirmation, and replication of novel urinary MicroRNA biomarkers in lupus nephritis and diabetic nephropathy
.
Clin Chem
.
2017
;
63
(
9
):
1515
26
.
30.
Martinez-Arroyo
O
,
Flores-Chova
A
,
Mendez-Debaets
M
,
Martinez-Hervas
S
,
Martinez
F
,
Forner
MJ
, et al
.
Enrichment of RedoxifibromiR miR-21-5p in plasma exosomes of hypertensive patients with renal injury
.
Int J Mol Sci
.
2025
;
26
(
2
):
590
.
31.
Sun
H
,
Guo
F
,
Xu
L
.
Downregulation of microRNA-101-3p participates in systemic lupus erythematosus progression via negatively regulating HDAC9
.
J Cell Biochem
.
2020
;
121
(
10
):
4310
20
.
32.
Zhao
X
,
Li
S
,
Wang
Z
,
Bai
N
,
Feng
Y
.
miR‑101‑3p negatively regulates inflammation in systemic lupus erythematosus via MAPK1 targeting and inhibition of the NF‑κB pathway
.
Mol Med Rep
.
2021
;
23
(
5
):
359
.
33.
Zhou
G
,
Li
Y
,
Ni
J
,
Jiang
P
,
Bao
Z
.
Role and mechanism of miR-144-5p in LPS-induced macrophages
.
Exp Ther Med
.
2020
;
19
(
1
):
241
7
.
34.
Xu
G
,
Mo
L
,
Wu
C
,
Shen
X
,
Dong
H
,
Yu
L
, et al
.
The miR-15a-5p-XIST-CUL3 regulatory axis is important for sepsis-induced acute kidney injury
.
Ren Fail
.
2019
;
41
(
1
):
955
66
.
35.
Lou
Y
,
Huang
Z
.
microRNA-15a-5p participates in sepsis by regulating the inflammatory response of macrophages and targeting TNIP2
.
Exp Ther Med
.
2020
;
19
(
4
):
3060
8
.
36.
Chen
H
,
Tian
Y
.
MiR-15a-5p regulates viability and matrix degradation of human osteoarthritis chondrocytes via targeting VEGFA
.
Biosci Trends
.
2017
;
10
(
6
):
482
8
.
37.
Shang
J
,
He
Q
,
Chen
Y
,
Yu
D
,
Sun
L
,
Cheng
G
, et al
.
miR-15a-5p suppresses inflammation and fibrosis of peritoneal mesothelial cells induced by peritoneal dialysis via targeting VEGFA
.
J Cell Physiol
.
2019
;
234
(
6
):
9746
55
.
38.
Cao
F
,
Li
Z
,
Ding
W
,
Qv
C
,
Zhao
H
.
Exosomal miR-15a-5p from cardiomyocytes promotes myocardial fibrosis
.
Mol Cell Biochem
.
2024
;
7
. (In press).
39.
He
D
,
Ruan
ZB
,
Song
GX
,
Chen
GC
,
Wang
F
,
Wang
MX
, et al
.
miR-15a-5p regulates myocardial fibrosis in atrial fibrillation by targeting Smad7
.
PeerJ
.
2021
;
9
:
e12686
.
You do not currently have access to this content.