Introduction: Peritoneal dialysis (PD) is an effective home therapy for end-stage kidney disease. However, continuous exposure to PD fluids with high glucose concentration and recurrent peritonitis may lead to the activation of cellular and molecular processes of peritoneal damage, including inflammation and fibrosis. In particular, recent studies have highlighted the role of neutrophils in chronic inflammation. This study explores how neutrophil extracellular traps (NETs) affect peritoneal membrane function and contribute to technical failures in PD patients. Methods: We conducted a prospective observational study involving 250 noninfectious and 30 acute peritonitis patients. NETs were measured using nucleosome and myeloperoxidase DNA levels in PD fluids. Monocyte chemoattractant protein-1 (MCP-1) and matrix metalloproteinase-8 (MMP-8) were also measured to assess peritoneal inflammation and damage. Results: A significant increase in peritoneal NETs, as determined by nucleosome and myeloperoxidase DNA levels, was observed in patients with acute peritonitis compared to patients without peritonitis. Even in noninfectious samples, NET levels were widely distributed and closely correlated with levels of MCP-1 and MMP-8. Higher levels of peritoneal NETs were closely associated with increased 4-h dialyzate/peritoneal (D/P) creatinine ratio and 1-h D/P sodium levels, indicating a higher prevalence of fast transport and limited free water transport. These factors were associated with a higher risk of technical failure. During a mean follow-up of 34 months, 39.2% (98 patients) switched from PD to hemodialysis, with higher NET levels significantly increasing the risk by 1.9 times (95% confidence interval: 1.27–2.83, p = 0.020). Conclusion: This study suggests the importance of peritoneal NETs not only as markers of acute inflammation but also as significant immunological predictors of chronic peritoneal membrane inflammation and dysfunction and as potential risk factors for technical failure.

1.
François
K
,
Bargman
JM
.
Evaluating the benefits of home-based peritoneal dialysis
.
Int J Nephrol Renovasc Dis
.
2014
;
7
:
447
55
.
2.
Hsu
CC
,
Huang
CC
,
Chang
YC
,
Chen
JS
,
Tsai
WC
,
Wang
KY
.
A comparison of quality of life between patients treated with different dialysis modalities in Taiwan
.
PLoS One
.
2020
;
15
(
1
):
e0227297
.
3.
Kang
M
,
Kim
YL
,
Kang
E
,
Ryu
H
,
Kim
YC
,
Kim
DK
, et al
.
Evolving outcomes of peritoneal dialysis: secular trends at a single large center over three decades
.
Kidney Res Clin Pract
.
2021
;
40
(
3
):
472
83
.
4.
Marshall
MR
.
A systematic review of peritoneal dialysis-related peritonitis rates over time from national or regional population-based registries and databases
.
Perit Dial Int
.
2022
;
42
(
1
):
39
47
.
5.
Perl
J
,
Davies
SJ
,
Lambie
M
,
Pisoni
RL
,
McCullough
K
,
Johnson
DW
, et al
.
The peritoneal dialysis outcomes and practice patterns study (PDOPPS): unifying efforts to inform practice and improve global outcomes in peritoneal dialysis
.
Perit Dial Int
.
2016
;
36
(
3
):
297
307
.
6.
Li
PK
,
Kwong
VW
.
Current challenges and opportunities in PD
.
Semin Nephrol
.
2017
;
37
(
1
):
2
9
.
7.
Manera
KE
,
Johnson
DW
,
Craig
JC
,
Shen
JI
,
Gutman
T
,
Cho
Y
, et al
.
Establishing a core outcome set for peritoneal dialysis: report of the SONG-PD (standardized outcomes in nephrology-peritoneal dialysis) consensus workshop
.
Am J Kidney Dis
.
2020
;
75
(
3
):
404
12
.
8.
Davies
SJ
,
Bryan
J
,
Phillips
L
,
Russell
GI
.
Longitudinal changes in peritoneal kinetics: the effects of peritoneal dialysis and peritonitis
.
Nephrol Dial Transpl
.
1996
;
11
(
3
):
498
506
.
9.
Davies
SJ
,
Brown
EA
,
Frandsen
NE
,
Rodrigues
AS
,
Rodriguez-Carmona
A
,
Vychytil
A
, et al
.
Longitudinal membrane function in functionally anuric patients treated with APD: data from EAPOS on the effects of glucose and icodextrin prescription
.
Kidney Int
.
2005
;
67
(
4
):
1609
15
.
10.
Trionfetti
F
,
Marchant
V
,
González-Mateo
GT
,
Kawka
E
,
Márquez-Expósito
L
,
Ortiz
A
, et al
.
Novel aspects of the immune response involved in the peritoneal damage in chronic kidney disease patients under dialysis
.
Int J Mol Sci
.
2023
;
24
(
6
):
5763
.
11.
Yáñez-Mó
M
,
Lara-Pezzi
E
,
Selgas
R
,
Ramírez-Huesca
M
,
Domínguez-Jiménez
C
,
Jiménez-Heffernan
JA
, et al
.
Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells
.
N Engl J Med
.
2003
;
348
(
5
):
403
13
.
12.
Del Peso
G
,
Jiménez-Heffernan
JA
,
Bajo
MA
,
Aroeira
LS
,
Aguilera
A
,
Fernández-Perpén
A
, et al
.
Epithelial-to-mesenchymal transition of mesothelial cells is an early event during peritoneal dialysis and is associated with high peritoneal transport
.
Kidney Int Suppl
.
2008
(
108
):
S26
33
.
13.
Morelle
J
,
Sow
A
,
Hautem
N
,
Bouzin
C
,
Crott
R
,
Devuyst
O
, et al
.
Interstitial fibrosis restricts osmotic water transport in encapsulating peritoneal sclerosis
.
J Am Soc Nephrol
.
2015
;
26
(
10
):
2521
33
.
14.
Buechler
MB
,
Turley
SJ
.
Neutrophils follow stromal omens to limit peritoneal inflammation
.
Immunity
.
2020
;
52
(
4
):
578
80
.
15.
de Oliveira
S
,
Rosowski
EE
,
Huttenlocher
A
.
Neutrophil migration in infection and wound repair: going forward in reverse
.
Nat Rev Immunol
.
2016
;
16
(
6
):
378
91
.
16.
Herrero-Cervera
A
,
Soehnlein
O
,
Kenne
E
.
Neutrophils in chronic inflammatory diseases
.
Cell Mol Immunol
.
2022
;
19
(
2
):
177
91
.
17.
Lu
Y
,
Elrod
J
,
Herrmann
M
,
Knopf
J
,
Boettcher
M
.
Neutrophil extracellular traps: a crucial factor in post-surgical abdominal adhesion formation
.
Cells
.
2024
;
13
(
11
):
991
.
18.
Tsai
JM
,
Shoham
M
,
Fernhoff
NB
,
George
BM
,
Marjon
KD
,
McCracken
MN
, et al
.
Neutrophil and monocyte kinetics play critical roles in mouse peritoneal adhesion formation
.
Blood Adv
.
2019
;
3
(
18
):
2713
21
.
19.
Hidalgo
A
,
Libby
P
,
Soehnlein
O
,
Aramburu
IV
,
Papayannopoulos
V
,
Silvestre-Roig
C
.
Neutrophil extracellular traps: from physiology to pathology
.
Cardiovasc Res
.
2022
;
118
(
13
):
2737
53
.
20.
Wang
J
.
Neutrophils in tissue injury and repair
.
Cell Tissue Res
.
2018
;
371
(
3
):
531
9
.
21.
Elrod
J
,
Heuer
A
,
Knopf
J
,
Schoen
J
,
Schönfeld
L
,
Trochimiuk
M
, et al
.
Neutrophil extracellular traps and DNases orchestrate formation of peritoneal adhesions
.
iScience
.
2023
;
26
(
12
):
108289
.
22.
Manicone
AM
,
McGuire
JK
.
Matrix metalloproteinases as modulators of inflammation
.
Semin Cell Dev Biol
.
2008
;
19
(
1
):
34
41
.
23.
Parks
WC
,
Wilson
CL
,
López-Boado
YS
.
Matrix metalloproteinases as modulators of inflammation and innate immunity
.
Nat Rev Immunol
.
2004
;
4
(
8
):
617
29
.
24.
Van Lint
P
,
Libert
C
.
Matrix metalloproteinase-8: cleavage can be decisive
.
Cytokine Growth Factor Rev
.
2006
;
17
(
4
):
217
23
.
25.
Daly
MC
,
Atkinson
SJ
,
Varisco
BM
,
Klingbeil
L
,
Hake
P
,
Lahni
P
, et al
.
Role of matrix metalloproteinase-8 as a mediator of injury in intestinal ischemia and reperfusion
.
Faseb j
.
2016
;
30
(
10
):
3453
60
.
26.
Nagase
H
,
Visse
R
,
Murphy
G
.
Structure and function of matrix metalloproteinases and TIMPs
.
Cardiovasc Res
.
2006
;
69
(
3
):
562
73
.
27.
Sirniö
P
,
Tuomisto
A
,
Tervahartiala
T
,
Sorsa
T
,
Klintrup
K
,
Karhu
T
, et al
.
High-serum MMP-8 levels are associated with decreased survival and systemic inflammation in colorectal cancer
.
Br J Cancer
.
2018
;
119
(
2
):
213
9
.
28.
Luchian
I
,
Goriuc
A
,
Sandu
D
,
Covasa
M
.
The role of matrix metalloproteinases (MMP-8, MMP-9, MMP-13) in periodontal and peri-implant pathological processes
.
Int J Mol Sci
.
2022
;
23
(
3
):
1806
.
29.
Morelle
J
,
Stachowska-Pietka
J
,
Oberg
C
,
Gadola
L
,
La Milia
V
,
Yu
Z
, et al
.
ISPD recommendations for the evaluation of peritoneal membrane dysfunction in adults: classification, measurement, interpretation and rationale for intervention
.
Perit Dial Int
.
2021
;
41
(
4
):
352
72
.
30.
Davies
SJ
.
Longitudinal relationship between solute transport and ultrafiltration capacity in peritoneal dialysis patients
.
Kidney Int
.
2004
;
66
(
6
):
2437
45
.
31.
Smit
W
,
Struijk
DG
,
Ho-Dac-Pannekeet
MM
,
Krediet
RT
.
Quantification of free water transport in peritoneal dialysis
.
Kidney Int
.
2004
;
66
(
2
):
849
54
.
32.
Yang
X
,
Zhang
H
,
Hang
Y
,
Yan
H
,
Lin
A
,
Huang
J
, et al
.
Intraperitoneal interleukin-6 levels predict peritoneal solute transport rate: a prospective cohort study
.
Am J Nephrol
.
2014
;
39
(
6
):
459
65
.
33.
Shah
SK
,
Jimenez
F
,
Walker
PA
,
Xue
H
,
Feeley
TD
,
Uray
KS
, et al
.
Peritoneal fluid: a potential mechanism of systemic neutrophil priming in experimental intra-abdominal sepsis
.
Am J Surg
.
2012
;
203
(
2
):
211
6
.
34.
Shah
SK
,
Jimenez
F
,
Walker
PA
,
Aroom
KR
,
Xue
H
,
Feeley
TD
, et al
.
A novel mechanism for neutrophil priming in trauma: potential role of peritoneal fluid
.
Surgery
.
2010
;
148
(
2
):
263
70
.
You do not currently have access to this content.