Background: Mitochondrial, lysosomal, and peroxisomal dysfunction; defective autophagy; mitophagy; and pexophagy, as well as the loss of glycocalyx integrity are known contributors to initiation and progression of diverse kidney diseases. Those cellular organelles are tightly interactive in health, and during development of a disease, damage in one may propagate to others. By extension, it follows that restoring an individual defect may culminate in a broader restorative spectrum and improvement of cell and organ functions. Summary: A novel strategy of reconditioning cellular organellar dysfunction, which we define as refurbishment of pathogenically pivotal intra- or extracellular elements, damaged in the course of disease and impeding restoration, is briefly outlined in this overview. Individual therapeutic reconditioning approaches targeting selected organelles are cataloged. We anticipate that the proposed reconditioning strategy in the future may enrich the arsenal of regenerative medicine and nephrology. Key Message: The arsenal of regenerative medicine and nephrology consisting of organ transplantation, use of stem cells, cell-free approaches, cell reprogramming strategies, and organ engineering has been enriched by the reconditioning strategy. The latter is based on the recognition of two facts that (a) impairment of diverse cellular organelles contributes to pathogenesis of kidney disease and (b) individual organelles are functionally interactively coupled, which explains the “domino effect” leading to their dysfunction. Reconditioning takes advantage of these facts and, while initially directed to restore the function of individual cellular organelles, culminates in the propagation of a therapeutic intervention to account for improved cell and organ function. Examples of such interventions are briefly summarized along the presentation of defective cellular organelles contributing to pathogenesis of kidney disease.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.