Introduction: The pathogenic roles of aberrantly glycosylated IgA1 have been reported. However, it is unexplored whether the profiling of urinary glycans contributes to the diagnosis of IgAN. Methods: We conducted a retrospective study enrolling 493 patients who underwent renal biopsy at Okayama University Hospital between December 2010 and September 2017. We performed lectin microarray in urine samples and investigated whether c-statistics of the reference standard diagnosis model employing hematuria, proteinuria, and serum IgA were improved by adding the urinary glycan intensity. Results: Among 45 lectins, 3 lectins showed a significant improvement of the models: Amaranthus caudatus lectin (ACA) with the difference of c-statistics 0.038 (95% CI: 0.019–0.058, p < 0.001), Agaricus bisporus lectin (ABA) 0.035 (95% CI: 0.015–0.055, p < 0.001), and Maackia amurensis lectin (MAH) 0.035 (95% CI: 0.015–0.054, p < 0.001). In 3 lectins, each signal plus reference standard showed good reclassification (category-free NRI and relative IDI) and good model fitting associated with the improvement of AIC and BIC. Stratified by eGFR, the discriminatory ability of ACA plus reference standard was maintained, suggesting the robust renal function-independent diagnostic performance of ACA. By decision curve analysis, there was a 3.45% net benefit by adding urinary glycan intensity of ACA to the reference standard at the predefined threshold probability of 40%. Conclusions: The reduction of Gal(β1-3)GalNAc (T-antigen), Sia(α2-3)Gal(β1-3)GalNAc (Sialyl T), and Sia(α2-3)Gal(β1-3)Sia(α2-6)GalNAc (disialyl-T) was suggested by binding specificities of 3 lectins. C1GALT1 and COSMC were responsible for the biosynthesis of these glycans, and they were known to be downregulated in IgAN. The urinary glycan analysis by ACA is a useful and robust noninvasive strategy for the diagnosis of IgAN.

1.
Lai
KN
,
Tang
SC
,
Schena
FP
,
Novak
J
,
Tomino
Y
,
Fogo
AB
,
.
IgA nephropathy
.
Nat Rev Dis Primers
.
2016 Feb 11
;
2
:
16001
.
2.
Schena
FP
.
A retrospective analysis of the natural history of primary IgA nephropathy worldwide
.
Am J Med
.
1990 Aug
;
89
(
2
):
209
15
.
3.
Le
W
,
Liang
S
,
Hu
Y
,
Deng
K
,
Bao
H
,
Zeng
C
,
.
Long-term renal survival and related risk factors in patients with IgA nephropathy: results from a cohort of 1155 cases in a Chinese adult population
.
Nephrol Dial Transplant
.
2012 Apr
;
27
(
4
):
1479
85
.
4.
Moriyama
T
,
Tanaka
K
,
Iwasaki
C
,
Oshima
Y
,
Ochi
A
,
Kataoka
H
,
.
Prognosis in IgA nephropathy: 30-year analysis of 1,012 patients at a single center in Japan
.
PLoS One
.
2014
;
9
(
3
):
e91756
.
5.
Working Group of the International IgA Nephropathy Network and the Renal Pathology Society
;
Roberts
IS
,
Cook
HT
,
Troyanov
S
,
Alpers
CE
,
Amore
A
,
.
The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility
.
Kidney Int
.
2009 Sep
;
76
(
5
):
546
56
.
6.
Apweiler
R
,
Hermjakob
H
,
Sharon
N
.
On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database
.
Biochim Biophys Acta
.
1999 Dec 17
;
1473
(
1
):
4
8
.
7.
Hart
GW
,
Copeland
RJ
.
Glycomics hits the big time
.
Cell
.
2010 Nov 24
;
143
(
5
):
672
6
.
8.
Suzuki
H
,
Kiryluk
K
,
Novak
J
,
Moldoveanu
Z
,
Herr
AB
,
Renfrow
MB
,
.
The pathophysiology of IgA nephropathy
.
J Am Soc Nephrol
.
2011 Oct
;
22
(
10
):
1795
803
.
9.
Field
MC
,
Dwek
RA
,
Edge
CJ
,
Rademacher
TW
.
O-linked oligosaccharides from human serum immunoglobulin A1
.
Biochem Soc Trans
.
1989
;
17
(
6
):
1034
5
.
10.
Hiki
Y
,
Odani
H
,
Takahashi
M
,
Yasuda
Y
,
Nishimoto
A
,
Iwase
H
,
.
Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy
.
Kidney Int
.
2001 Mar
;
59
(
3
):
1077
85
.
11.
Franc
V
,
Rehulka
P
,
Raus
M
,
Stulik
J
,
Novak
J
,
Renfrow
MB
,
.
Elucidating heterogeneity of IgA1 hinge-region O-glycosylation by use of MALDI-TOF/TOF mass spectrometry: role of cysteine alkylation during sample processing
.
J Proteomics
.
2013 Oct 30
;
92
:
299
312
.
12.
Tomana
M
,
Novak
J
,
Julian
BA
,
Matousovic
K
,
Konecny
K
,
Mestecky
J
.
Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies
.
J Clin Invest
.
1999 Jul
;
104
(
1
):
73
81
.
13.
Hastings
MC
,
Moldoveanu
Z
,
Suzuki
H
,
Berthoux
F
,
Julian
BA
,
Sanders
JT
,
.
Biomarkers in IgA nephropathy: relationship to pathogenetic hits
.
Expert Opin Med Diagn
.
2013 Nov
;
7
(
6
):
615
27
.
14.
Novak
J
,
Rizk
D
,
Takahashi
K
,
Zhang
X
,
Bian
Q
,
Ueda
H
,
.
New insights into the pathogenesis of IgA nephropathy
.
Kidney Dis
.
2015 May
;
1
(
1
):
8
18
.
15.
Kuno
A
,
Uchiyama
N
,
Koseki-Kuno
S
,
Ebe
Y
,
Takashima
S
,
Yamada
M
,
.
Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling
.
Nat Methods
.
2005 Nov
;
2
(
11
):
851
6
.
16.
Hirabayashi
J
,
Yamada
M
,
Kuno
A
,
Tateno
H
.
Lectin microarrays: concept, principle and applications
.
Chem Soc Rev
.
2013 May 21
;
42
(
10
):
4443
58
.
17.
Mise
K
,
Imamura
M
,
Yamaguchi
S
,
Teshigawara
S
,
Tone
A
,
Uchida
HA
,
.
Identification of novel urinary biomarkers for predicting renal prognosis in patients with type 2 diabetes by glycan profiling in a multicenter prospective cohort study: U-CARE study 1
.
Diabetes Care
.
2018 Aug
;
41
(
8
):
1765
75
.
18.
Mise
K
,
Imamura
M
,
Yamaguchi
S
,
Watanabe
M
,
Higuchi
C
,
Katayama
A
,
.
Novel urinary glycan biomarkers predict cardiovascular events in patients with type 2 diabetes: a multicenter prospective study with 5-year follow up (U-CARE study 2)
.
Front Cardiovasc Med
.
2021
;
8
:
668059
.
19.
Kawakita
C
,
Mise
K
,
Onishi
Y
,
Sugiyama
H
,
Yoshida
M
,
Yamada
M
,
.
Novel urinary glycan profiling by lectin array serves as the biomarkers for predicting renal prognosis in patients with IgA nephropathy
.
Sci Rep
.
2021 Feb 9
;
11
(
1
):
3394
.
20.
Matsuo
S
,
Imai
E
,
Horio
M
,
Yasuda
Y
,
Tomita
K
,
Nitta
K
,
.
Revised equations for estimated GFR from serum creatinine in Japan
.
Am J Kidney Dis
.
2009 Jun
;
53
(
6
):
982
92
.
21.
Uemura
O
,
Nagai
T
,
Ishikura
K
,
Ito
S
,
Hataya
H
,
Gotoh
Y
,
.
Creatinine-based equation to estimate the glomerular filtration rate in Japanese children and adolescents with chronic kidney disease
.
Clin Exp Nephrol
.
2014 Aug
;
18
(
4
):
626
33
.
22.
Tanaka
K
,
Sugiyama
H
,
Yamanari
T
,
Mise
K
,
Morinaga
H
,
Kitagawa
M
,
.
Renal expression of trefoil factor 3 mRNA in association with tubulointerstitial fibrosis in IgA nephropathy
.
Nephrology
.
2018 Sep
;
23
(
9
):
855
62
.
23.
Tomino
Y
,
Suzuki
S
,
Imai
H
,
Saito
T
,
Kawamura
T
,
Yorioka
N
,
.
Measurement of serum IgA and C3 may predict the diagnosis of patients with IgA nephropathy prior to renal biopsy
.
J Clin Lab Anal
.
2000
;
14
(
5
):
220
3
.
24.
Coppo
R
,
Fervenza
FC
.
Persistent microscopic hematuria as a risk factor for progression of IgA nephropathy: new floodlight on a nearly forgotten biomarker
.
J Am Soc Nephrol
.
2017 Oct
;
28
(
10
):
2831
4
.
25.
Kim
JK
,
Kim
JH
,
Lee
SC
,
Kang
EW
,
Chang
TI
,
Moon
SJ
,
.
Clinical features and outcomes of IgA nephropathy with nephrotic syndrome
.
Clin J Am Soc Nephrol
.
2012 Mar
;
7
(
3
):
427
36
.
26.
Maeda
A
,
Gohda
T
,
Funabiki
K
,
Horikoshi
S
,
Shirato
I
,
Tomino
Y
.
Significance of serum IgA levels and serum IgA/C3 ratio in diagnostic analysis of patients with IgA nephropathy
.
J Clin Lab Anal
.
2003
;
17
(
3
):
73
6
.
27.
Pepe
M
,
Longton
G
,
Janes
H
.
Estimation and comparison of receiver operating characteristic curves
.
Stata J
.
2009 Mar 1
;
9
(
1
):
1
.
28.
Pencina
MJ
,
D’Agostino
RB
Sr
,
D’Agostino
RB
Jr
,
Vasan
RS
.
Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond
.
Stat Med
.
2008 Jan 30
;
27
(
2
):
157
12
; discussion 207–12. http://dx.doi.org/10.1002/sim.2929.
29.
Vickers
AJ
,
Elkin
EB
.
Decision curve analysis: a novel method for evaluating prediction models
.
Med Decis Making
.
2006 Nov–Dec
;
26
(
6
):
565
74
.
30.
Vickers
AJ
,
Cronin
AM
,
Elkin
EB
,
Gonen
M
.
Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers
.
BMC Med Inform Decis Mak
.
2008 Nov 26
;
8
:
53
.
31.
Working Group of the International IgA Nephropathy Network and the Renal Pathology Society
;
Cattran
DC
,
Coppo
R
,
Cook
HT
,
Feehally
J
,
Rober
ISD
,
.
The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification
.
Kidney Int
.
2009 Sep
;
76
(
5
):
534
45
.
32.
Ronco
P
.
Moderator’s view: biomarkers in glomerular diseases – translated into patient care or lost in translation
.
Nephrol Dial Transplant
.
2015 Jun
;
30
(
6
):
899
902
.
33.
Ju
T
,
Cummings
RD
.
A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase
.
Proc Natl Acad Sci U S A
.
2002
;
99
(
26
):
16613
8
.
34.
Sun
X
,
Zhan
M
,
Sun
X
,
Liu
W
,
Meng
X
.
C1GALT1 in health and disease
.
Oncol Lett
.
2021 Aug
;
22
(
2
):
589
.
35.
Suzuki
H
,
Yasutake
J
,
Makita
Y
,
Tanbo
Y
,
Yamasaki
K
,
Sofue
T
,
.
IgA nephropathy and IgA vasculitis with nephritis have a shared feature involving galactose-deficient IgA1-oriented pathogenesis
.
Kidney Int
.
2018 Mar
;
93
(
3
):
700
5
.
36.
Moldoveanu
Z
,
Wyatt
RJ
,
Lee
JY
,
Tomana
M
,
Julian
BA
,
Mestecky
J
,
.
Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels
.
Kidney Int
.
2007 Jun
;
71
(
11
):
1148
54
.
37.
Yasutake
J
,
Suzuki
Y
,
Suzuki
H
,
Hiura
N
,
Yanagawa
H
,
Makita
Y
,
.
Novel lectin-independent approach to detect galactose-deficient IgA1 in IgA nephropathy
.
Nephrol Dial Transplant
.
2015 Aug
;
30
(
8
):
1315
21
.
38.
Li
GS
,
Zhang
H
,
Lv
JC
,
Shen
Y
,
Wang
HY
.
Variants of C1GALT1 gene are associated with the genetic susceptibility to IgA nephropathy
.
Kidney Int
.
2007 Mar
;
71
(
5
):
448
53
.
39.
Allen
AC
,
Topham
PS
,
Harper
SJ
,
Feehally
J
.
Leucocyte beta 1,3 galactosyltransferase activity in IgA nephropathy
.
Nephrol Dial Transplant
.
1997
;
12
(
4
):
701
6
.
40.
Smith
AC
,
de Wolff
JF
,
Molyneux
K
,
Feehally
J
,
Barratt
J
.
O-glycosylation of serum IgD in IgA nephropathy
.
J Am Soc Nephrol
.
2006 Apr
;
17
(
4
):
1192
9
.
41.
Alexander
WS
,
Viney
EM
,
Zhang
J-G
,
Metcalf
D
,
Kauppi
M
,
Hyland
CD
,
.
Thrombocytopenia and kidney disease in mice with a mutation in the <em>C1galt1</em> gene
.
Proc Natl Acad Sci
.
2006
;
103
(
44
):
16442
7
.
42.
Nielsen
JS
,
McNagny
KM
.
The role of podocalyxin in health and disease
.
J Am Soc Nephrol
.
2009 Aug
;
20
(
8
):
1669
76
.
43.
Asao
R
,
Asanuma
K
,
Kodama
F
,
Akiba-Takagi
M
,
Nagai-Hosoe
Y
,
Seki
T
,
.
Relationships between levels of urinary podocalyxin, number of urinary podocytes, and histologic injury in adult patients with IgA nephropathy
.
Clin J Am Soc Nephrol
.
2012 Sep
;
7
(
9
):
1385
93
.
44.
Kamiyama
M
,
Garner
MK
,
Farragut
KM
,
Kobori
H
.
The establishment of a primary culture system of proximal tubule segments using specific markers from normal mouse kidneys
.
Int J Mol Sci
.
2012
;
13
(
4
):
5098
111
.
45.
Moon
PG
,
Lee
JE
,
You
S
,
Kim
TK
,
Cho
JH
,
Kim
IS
,
.
Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy
.
Proteomics
.
2011 Jun
;
11
(
12
):
2459
75
.
46.
Ohyama
Y
,
Renfrow
MB
,
Novak
J
,
Takahashi
K
.
Aberrantly glycosylated IgA1 in IgA nephropathy: what we know and what we don’t know
.
J Clin Med
.
2021 Aug 5
;
10
(
16
):
10
.
47.
Goritzer
K
,
Turupcu
A
,
Maresch
D
,
Novak
J
,
Altmann
F
,
Oostenbrink
C
,
.
Distinct Fcalpha receptor N-glycans modulate the binding affinity to immunoglobulin A (IgA) antibodies
.
J Biol Chem
.
2019 Sep 20
;
294
(
38
):
13995
4008
.
48.
Malhotra
R
,
Wormald
MR
,
Rudd
PM
,
Fischer
PB
,
Dwek
RA
,
Sim
RB
.
Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein
.
Nat Med
.
1995 Mar
;
1
(
3
):
237
43
.
49.
Arnold
JN
,
Wormald
MR
,
Suter
DM
,
Radcliffe
CM
,
Harvey
DJ
,
Dwek
RA
,
.
Human serum IgM glycosylation: identification of glycoforms that can bind to mannan-binding lectin
.
J Biol Chem
.
2005 Aug 12
;
280
(
32
):
29080
7
.
50.
Olsen
M
,
Zhelev
Z
,
Hunt
H
,
Peters
JL
,
Bossuyt
P
,
Hyde
C
.
Use of test accuracy study design labels in NICE’s diagnostic guidance
.
Diagn Progn Res
.
2019
;
3
:
17
.
51.
Gale
DP
,
Molyneux
K
,
Wimbury
D
,
Higgins
P
,
Levine
AP
,
Caplin
B
,
.
Galactosylation of IgA1 is associated with common variation in C1GALT1
.
J Am Soc Nephrol
.
2017 Jul
;
28
(
7
):
2158
66
.
52.
Kiryluk
K
,
Li
Y
,
Moldoveanu
Z
,
Suzuki
H
,
Reily
C
,
Hou
P
,
.
GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway
.
PLoS Genet
.
2017 Feb
;
13
(
2
):
e1006609
.
53.
Zhang
H
,
Barratt
J
.
Is IgA nephropathy the same disease in different parts of the world
.
Semin Immunopathol
.
2021 Aug 20
;
43
(
5
):
707
15
.
54.
Suzuki
H
,
Fan
R
,
Zhang
Z
,
Brown
R
,
Hall
S
,
Julian
BA
,
.
Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity
.
J Clin Invest
.
2009 Jun
;
119
(
6
):
1668
77
.
55.
Zhang
JJ
,
Jiang
L
,
Liu
G
,
Wang
SX
,
Zou
WZ
,
Zhang
H
,
.
Levels of urinary complement factor H in patients with IgA nephropathy are closely associated with disease activity
.
Scand J Immunol
.
2009 May
;
69
(
5
):
457
64
.
56.
McCarthy
DD
,
Kujawa
J
,
Wilson
C
,
Papandile
A
,
Poreci
U
,
Porfilio
EA
,
.
Mice overexpressing BAFF develop a commensal flora-dependent, IgA-associated nephropathy
.
J Clin Invest
.
2011 Oct
;
121
(
10
):
3991
4002
.
You do not currently have access to this content.