Visual Abstract

Background: Chronic renovascular disease (RVD) can lead to a progressive loss of renal function, and current treatments are inefficient. We designed a fusion of vascular endothelial growth factor (VEGF) conjugated to an elastin-like polypeptide (ELP) carrier protein with an N-terminal kidney-targeting peptide (KTP). We tested the hypothesis that KTP-ELP-VEGF therapy will effectively recover renal function with an improved targeting profile. Further, we aimed to elucidate potential mechanisms driving renal recovery. Methods: Unilateral RVD was induced in 14 pigs. Six weeks later, renal blood flow (RBF) and glomerular filtration rate (GFR) were quantified by multidetector CT imaging. Pigs then received a single intrarenal injection of KTP-ELP-VEGF or vehicle. CT quantification of renal hemodynamics was repeated 4 weeks later, and then pigs were euthanized. Ex vivo renal microvascular (MV) density and media-to-lumen ratio, macrophage infiltration, and fibrosis were quantified. In parallel, THP-1 human monocytes were differentiated into naïve macrophages (M0) or inflammatory macrophages (M1) and incubated with VEGF, KTP-ELP, KTP-ELP-VEGF, or control media. The mRNA expression of macrophage polarization and angiogenic markers was quantified (qPCR). Results: Intrarenal KTP-ELP-VEGF improved RBF, GFR, and MV density and attenuated MV media-to-lumen ratio and renal fibrosis compared to placebo, accompanied by augmented renal M2 macrophages. In vitro, exposure to VEGF/KTP-ELP-VEGF shifted M0 macrophages to a proangiogenic M2 phenotype while M1s were nonresponsive to VEGF treatment. Conclusions: Our results support the efficacy of a new renal-specific biologic construct in recovering renal function and suggest that VEGF may directly influence macrophage phenotype as a possible mechanism to improve MV integrity and function in the stenotic kidney.

1.
Herrmann
SM
,
Textor
SC
.
Renovascular hypertension
.
Endocrinol Metab Clin North Am
.
2019 Dec 1
;
48
(
4
):
765
78
. .
2.
Kalra
PA
,
Guo
H
,
Kausz
AT
,
Gilbertson
DT
,
Liu
J
,
Chen
SC
, et al.
Atherosclerotic renovascular disease in United States patients aged 67 years or older: risk factors, revascularization, and prognosis
.
Kidney Int
.
2005 Jul
;
68
(
1
):
293
301
. .
3.
ASTRAL Investigators
,
Wheatley
K
,
Ives
N
,
Gray
R
,
Kalra
PA
,
Moss
JG
, et al.
Revascularization versus medical therapy for renal-artery stenosis
.
N Engl J Med
.
2009 Nov 12
;
361
(
20
):
1953
62
. .
4.
Mack
M
,
Yanagita
M
.
Origin of myofibroblasts and cellular events triggering fibrosis
.
Kidney Int
.
2015 Feb
;
87
(
2
):
297
307
. .
5.
Xavier
S
,
Vasko
R
,
Matsumoto
K
,
Zullo
JA
,
Chen
R
,
Maizel
J
, et al.
Curtailing endothelial TGF- signaling is sufficient to reduce endothelial-mesenchymal transition and fibrosis in CKD
.
J Am Soc Nephrol
.
2015 Apr
;
26
(
4
):
817
29
. .
6.
Leonard
EC
,
Friedrich
JL
,
Basile
DP
.
VEGF-121 preserves renal microvessel structure and ameliorates secondary renal disease following acute kidney injury
.
Am J Physiol Renal Physiol
.
2008 Dec
;
295
(
6
):
F1648
57
. .
7.
Chade
AR
,
Kelsen
S
.
Renal microvascular disease determines the responses to revascularization in experimental renovascular disease
.
Circ Cardiovasc Interv
.
2010 Aug
;
3
(
4
):
376
83
. .
8.
Chade
AR
,
Kelsen
S
.
Reversal of renal dysfunction by targeted administration of VEGF into the stenotic kidney: a novel potential therapeutic approach
.
Am J Physiol Renal Physiol
.
2012 May 15
;
302
(
10
):
F1342
50
. .
9.
Sivaskandarajah
GA
,
Jeansson
M
,
Maezawa
Y
,
Eremina
V
,
Baelde
HJ
,
Quaggin
SE
.
Vegfa protects the glomerular microvasculature in diabetes
.
Diabetes
.
2012 Nov
;
61
(
11
):
2958
66
. .
10.
Chade
AR
,
Tullos
NA
,
Harvey
TW
,
Mahdi
F
,
Bidwell
GL
 3rd
.
Renal therapeutic angiogenesis using a bioengineered polymer-stabilized vascular endothelial growth factor construct
.
J Am Soc Nephrol
.
2016 Jun
;
27
(
6
):
1741
52
. .
11.
Chade
AR
,
Williams
ML
,
Guise
E
,
Vincent
LJ
,
Harvey
TW
,
Kuna
M
, et al.
Systemic biopolymer-delivered vascular endothelial growth factor promotes therapeutic angiogenesis in experimental renovascular disease
.
Kidney Int
.
2018 Apr
;
93
(
4
):
842
54
. .
12.
Engel
J
,
Williams
E
,
Williams
M
,
Bidwell
G
,
Chade
A
.
Targeted VEGF (vascular endothelial growth factor) therapy induces long-term renal recovery in chronic kidney disease via macrophage polarization
.
Hypertension
.
2019
;
74
(
5
):
1113
.
13.
Bidwell
GL
 3rd
,
Raucher
D
.
Application of thermally responsive polypeptides directed against c-Myc transcriptional function for cancer therapy
.
Mol Cancer Ther
.
2005 Jul
;
4
(
7
):
1076
85
. .
14.
Bidwell
GL
 3rd
,
Davis
AN
,
Fokt
I
,
Priebe
W
,
Raucher
D
.
A thermally targeted elastin-like polypeptide-doxorubicin conjugate overcomes drug resistance
.
Invest New Drugs
.
2007 Aug
;
25
(
4
):
313
26
. .
15.
Bidwell
GL
 3rd
,
Fokt
I
,
Priebe
W
,
Raucher
D
.
Development of elastin-like polypeptide for thermally targeted delivery of doxorubicin
.
Biochem Pharmacol
.
2007 Mar 1
;
73
(
5
):
620
31
. .
16.
Pasqualini
R
,
Ruoslahti
E
.
Organ targeting in vivo using phage display peptide libraries
.
Nature
.
1996 Mar 28
;
380
(
6572
):
364
6
. .
17.
Bidwell
GL
 3rd
,
Mahdi
F
,
Shao
Q
,
Logue
OC
,
Waller
JP
,
Reese
C
, et al.
A kidney-selective biopolymer for targeted drug delivery
.
Am J Physiol Renal Physiol
.
2017 Jan 1
;
312
(
1
):
F54
64
. .
18.
Mahdi
F
,
Chade
AR
,
Bidwell
GL
 3rd
.
Utilizing a kidney-targeting peptide to improve renal deposition of a pro-angiogenic protein biopolymer
.
Pharmaceutics
.
2019 Oct 18
;
11
(
10
):
542
. .
19.
Lerman
LO
,
Schwartz
RS
,
Grande
JP
,
Sheedy
PF
,
Romero
JC
.
Noninvasive evaluation of a novel swine model of renal artery stenosis
.
J Am Soc Nephrol
.
1999
;
10
(
7
):
1455
65
.
20.
Chade
AR
,
Rodriguez-Porcel
M
,
Grande
JP
,
Krier
JD
,
Lerman
A
,
Romero
JC
, et al.
Distinct renal injury in early atherosclerosis and renovascular disease
.
Circulation
.
2002 Aug 27
;
106
(
9
):
1165
71
. .
21.
Iliescu
R
,
Fernandez
SR
,
Kelsen
S
,
Maric
C
,
Chade
AR
.
Role of renal microcirculation in experimental renovascular disease
.
Nephrol Dial Transplant
.
2010 Apr
;
25
(
4
):
1079
87
. .
22.
Kelsen
S
,
Hall
JE
,
Chade
AR
.
Endothelin-A receptor blockade slows the progression of renal injury in experimental renovascular disease
.
Am J Physiol Renal Physiol
.
2011 Jul
;
301
(
1
):
F218
25
. .
23.
Chade
AR
,
Stewart
NJ
,
Peavy
PR
.
Disparate effects of single endothelin-A and -B receptor blocker therapy on the progression of renal injury in advanced renovascular disease
.
Kidney Int
.
2014 Apr
;
85
(
4
):
833
44
. .
24.
Eirin
A
,
Zhu
XY
,
Li
Z
,
Ebrahimi
B
,
Zhang
X
,
Tang
H
, et al.
Endothelial outgrowth cells shift macrophage phenotype and improve kidney viability in swine renal artery stenosis
.
Arterioscler Thromb Vasc Biol
.
2013 May
;
33
(
5
):
1006
13
. .
25.
Chade
AR
,
Zhu
X
,
Mushin
OP
,
Napoli
C
,
Lerman
A
,
Lerman
LO
.
Simvastatin promotes angiogenesis and prevents microvascular remodeling in chronic renal ischemia
.
FASEB J
.
2006 Aug
;
20
(
10
):
1706
8
. .
26.
Chade
AR
,
Williams
ML
,
Engel
J
,
Guise
E
,
Harvey
TW
.
A translational model of chronic kidney disease in swine
.
Am J Physiol Renal Physiol
.
2018 Aug 1
;
315
(
2
):
F364
73
. .
27.
Guise
E
,
Engel
JE
,
Williams
ML
,
Mahdi
F
,
Bidwell
GL
 3rd
,
Chade
AR
.
Biopolymer-delivered vascular endothelial growth factor improves renal outcomes following revascularization
.
Am J Physiol Renal Physiol
.
2019 May 1
;
316
(
5
):
F1016
25
. .
28.
Daigneault
M
,
Preston
JA
,
Marriott
HM
,
Whyte
MK
,
Dockrell
DH
.
The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages
.
PLoS One
.
2010 Jan 13
;
5
(
1
):
e8668
. .
29.
Wheeler
KC
,
Jena
MK
,
Pradhan
BS
,
Nayak
N
,
Das
S
,
Hsu
CD
, et al.
VEGF may contribute to macrophage recruitment and M2 polarization in the decidua
.
PLoS One
.
2018
;
13
(
1
):
e0191040
. .
30.
Herrmann
SM
,
Textor
SC
.
Renovascular hypertension
.
Endocrinol Metab Clin North Am
.
2019 Dec
;
48
(
4
):
765
78
. .
31.
Kapetanovic
R
,
Fairbairn
L
,
Beraldi
D
,
Sester
DP
,
Archibald
AL
,
Tuggle
CK
, et al.
Pig bone marrow-derived macrophages resemble human macrophages in their response to bacterial lipopolysaccharide
.
J Immunol
.
2012
;
188
(
7
):
3382
94
. .
32.
Schroder
K
,
Irvine
KM
,
Taylor
MS
,
Bokil
NJ
,
Le Cao
KA
,
Masterman
KA
, et al.
Conservation and divergence in toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages
.
Proc Natl Acad Sci U S A
.
2012 Apr 17
;
109
(
16
):
E944
53
. .
33.
Nishida
M
,
Okumura
Y
,
Fujimoto
S
,
Shiraishi
I
,
Itoi
T
,
Hamaoka
K
.
Adoptive transfer of macrophages ameliorates renal fibrosis in mice
.
Biochem Biophys Res Commun
.
2005 Jun 24
;
332
(
1
):
11
6
. .
34.
Ji
L
,
Chen
Y
,
Wang
H
,
Zhang
W
,
He
L
,
Wu
J
, et al.
Overexpression of Sirt6 promotes M2 macrophage transformation, alleviating renal injury in diabetic nephropathy
.
Int J Oncol
.
2019 Jul
;
55
(
1
):
103
15
. .
35.
Mills
CD
,
Kincaid
K
,
Alt
JM
,
Heilman
MJ
,
Hill
AM
.
M-1/M-2 macrophages and the Th1/Th2 paradigm
.
J Immunol
.
2000 Jun 15
;
164
(
12
):
6166
73
. .
36.
Melincovici
CS
,
Bosca
AB
,
Susman
S
,
Marginean
M
,
Mihu
C
,
Istrate
M
, et al.
Vascular endothelial growth factor (VEGF): key factor in normal and pathological angiogenesis
.
Rom J Morphol Embryol
.
2018
;
59
(
2
):
455
67
.
37.
Spiller
KL
,
Anfang
RR
,
Spiller
KJ
,
Ng
J
,
Nakazawa
KR
,
Daulton
JW
, et al.
The role of macrophage phenotype in vascularization of tissue engineering scaffolds
.
Biomaterials
.
2014 May
;
35
(
15
):
4477
88
. .
38.
Holmes
K
,
Roberts
OL
,
Thomas
AM
,
Cross
MJ
.
Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition
.
Cell Signal
.
2007 Oct 1
;
19
(
10
):
2003
12
. .
39.
Roberts
DM
,
Kearney
JB
,
Johnson
JH
,
Rosenberg
MP
,
Kumar
R
,
Bautch
VL
.
The vascular endothelial growth factor (VEGF) receptor Flt-1 (VEGFR-1) modulates Flk-1 (VEGFR-2) signaling during blood vessel formation
.
Am J Pathol
.
2004 May
;
164
(
5
):
1531
5
. .
40.
Henao
DE
,
Arias
LF
,
Mathieson
PW
,
Ni
L
,
Welsh
GI
,
Bueno
JC
, et al.
Preeclamptic sera directly induce slit-diaphragm protein redistribution and alter podocyte barrier-forming capacity
.
Nephron Exp Nephrol
.
2008
;
110
(
3
):
e73
81
. .
41.
Zhao
S
,
Gu
X
,
Groome
LJ
,
Wang
Y
.
Decreased nephrin and GLEPP-1, but increased VEGF, Flt-1, and nitrotyrosine, expressions in kidney tissue sections from women with preeclampsia
.
Reprod Sci
.
2009 Oct
;
16
(
10
):
970
9
. .
42.
Moghaddas Sani
H
,
Zununi Vahed
S
,
Ardalan
M
.
Preeclampsia: a close look at renal dysfunction
.
Biomed Pharmacother
.
2019 Jan
;
109
:
408
16
. .
43.
D’Souza
MJ
,
Oettinger
CW
,
Shah
A
,
Tipping
PG
,
Huang
XR
,
Milton
GV
.
Macrophage depletion by albumin microencapsulated clodronate: attenuation of cytokine release in macrophage-dependent glomerulonephritis
.
Drug Dev Ind Pharm
.
1999 May
;
25
(
5
):
591
6
.
44.
Ferenbach
DA
,
Sheldrake
TA
,
Dhaliwal
K
,
Kipari
TM
,
Marson
LP
,
Kluth
DC
, et al.
Macrophage/monocyte depletion by clodronate, but not diphtheria toxin, improves renal ischemia/reperfusion injury in mice
.
Kidney Int
.
2012 Oct
;
82
(
8
):
928
33
. .
45.
Herrmann
SM
,
Textor
SC
.
Current concepts in the treatment of renovascular hypertension
.
Am J Hypertens
.
2018
;
31
(
2
):
139
49
. .
46.
Iliescu
R
,
Chade
AR
.
Progressive renal vascular proliferation and injury in obese Zucker rats
.
Microcirculation
.
2010 May
;
17
(
4
):
250
8
. .
47.
Futrakul
N
,
Futrakul
P
.
Renal microvascular disease predicts renal function in diabetes
.
Ren Fail
.
2012
;
34
(
1
):
126
9
. .
48.
Hall
ME
,
do Carmo
JM
,
da Silva
AA
,
Juncos
LA
,
Wang
Z
,
Hall
JE
.
Obesity, hypertension, and chronic kidney disease
.
Int J Nephrol Renovasc Dis
.
2014
;
7
:
75
88
. .
49.
Eddy
AC
,
Howell
JA
,
Chapman
H
,
Taylor
E
,
Mahdi
F
,
George
EM
, et al.
Biopolymer-delivered, maternally sequestered NF-κB (nuclear factor-κB) inhibitory peptide for treatment of preeclampsia
.
Hypertension
.
2020 Jan
;
75
(
1
):
193
201
. .
50.
Chade
AR
,
Williams
ML
,
Engel
JE
,
Williams
E
,
Bidwell
GL
 3rd
.
Molecular targeting of renal inflammation using drug delivery technology to inhibit NF-κB improves renal recovery in chronic kidney disease
.
Am J Physiol Renal Physiol
.
2020 Jul 1
;
319
(
1
):
F139
48
. .
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.