The DNA repair system is essential for the maintenance of genome integrity and is mainly investigated in the areas of aging and cancer. The DNA repair system is strikingly cell-type specific, depending on the expression of DNA repair factors; therefore, different DNA repair systems may exist in each type of kidney cell. Importance of DNA repair in the kidney is suggested by renal phenotypes caused by both genetic mutations in the DNA repair pathway and increased stimuli of DNA damage. Recently, we reported the importance of DNA double-strand break repair in glomerular podocytes and its involvement in the alteration of DNA methylation status, which regulates podocyte phenotypes. In this review, we summarize the roles of the DNA repair system in the kidneys and possible associations with altered kidney DNA methylation, which have been infrequently reported together. Investigations of DNA damage repair and epigenetic changes in the kidneys may achieve a profound understanding of kidney aging and diseases.

1.
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging.
Cell
. 2013 Jun;153(6):1194–217.
2.
Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway.
Annu Rev Biochem
. 2010;79(1):181–211.
3.
Shimizu I, Yoshida Y, Suda M, Minamino T. DNA damage response and metabolic disease.
Cell Metab
. 2014 Dec;20(6):967–77.
4.
Hoeijmakers JH. DNA damage, aging, and cancer.
N Engl J Med
. 2009 Oct;361(15):1475–85.
5.
Berkovich E, Monnat RJ Jr, Kastan MB. Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair.
Nat Cell Biol
. 2007 Jun;9(6):683–90.
6.
Mladenov E, Iliakis G. Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways.
Mutat Res
. 2011 Jun;711(1-2):61–72.
7.
Kunz C, Saito Y, Schär P. DNA Repair in mammalian cells: Mismatched repair: variations on a theme.
Cell Mol Life Sci
. 2009 Mar;66(6):1021–38.
8.
Robertson AB, Klungland A, Rognes T, Leiros I. DNA repair in mammalian cells: Base excision repair: the long and short of it.
Cell Mol Life Sci
. 2009 Mar;66(6):981–93.
9.
Nouspikel T. DNA repair in mammalian cells: Nucleotide excision repair: variations on versatility.
Cell Mol Life Sci
. 2009 Mar;66(6):994–1009.
10.
Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH. Understanding nucleotide excision repair and its roles in cancer and ageing.
Nat Rev Mol Cell Biol
. 2014 Jul;15(7):465–81.
11.
Schermer B, Bartels V, Frommolt P, Habermann B, Braun F, Schultze JL, et al. Transcriptional profiling reveals progeroid Ercc1(-/Δ) mice as a model system for glomerular aging.
BMC Genomics
. 2013 Aug;14(1):559.
12.
Burtner CR, Kennedy BK. Progeria syndromes and ageing: what is the connection?
Nat Rev Mol Cell Biol
. 2010 Aug;11(8):567–78.
13.
Kipling D, Davis T, Ostler EL, Faragher RG. What can progeroid syndromes tell us about human aging?
Science
. 2004 Sep;305(5689):1426–31.
14.
Selfridge J, Hsia KT, Redhead NJ, Melton DW. Correction of liver dysfunction in DNA repair-deficient mice with an ERCC1 transgene.
Nucleic Acids Res
. 2001 Nov;29(22):4541–50.
15.
Weren RD, Ligtenberg MJ, Kets CM, de Voer RM, Verwiel ET, Spruijt L, et al. A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer.
Nat Genet
. 2015 Jun;47(6):668–71.
16.
Bougeard G, Olivier-Faivre L, Baert-Desurmont S, Tinat J, Martin C, Bouvignies E, et al. Diversity of the clinical presentation of the MMR gene biallelic mutations.
Fam Cancer
. 2014 Mar;13(1):131–5.
17.
Woodbine L, Gennery AR, Jeggo PA. The clinical impact of deficiency in DNA non-homologous end-joining.
DNA Repair (Amst)
. 2014 Apr;16:84–96.
18.
Murray JE, van der Burg M, IJspeert H, Carroll P, Wu Q, Ochi T, et al. Mutations in the NHEJ component XRCC4 cause primordial dwarfism.
Am J Hum Genet
. 2015 Mar;96(3):412–24.
19.
Guo C, Nakazawa Y, Woodbine L, Björkman A, Shimada M, Fawcett H, et al. XRCC4 deficiency in human subjects causes a marked neurological phenotype but no overt immunodeficiency.
J Allergy Clin Immunol
. 2015 Oct;136(4):1007–17.
20.
Reiling E, Dollé ME, Youssef SA, Lee M, Nagarajah B, Roodbergen M, et al. The progeroid phenotype of Ku80 deficiency is dominant over DNA-PKCS deficiency.
PLoS One
. 2014 Apr;9(4):e93568.
21.
Weemaes CM, Smeets DF, Horstink M, Haraldsson A, Bakkeren JA. Variants of Nijmegen breakage syndrome and ataxia telangiectasia.
Immunodeficiency
. 1993;4(1-4):109–11.
22.
Chaki M, Airik R, Ghosh AK, Giles RH, Chen R, Slaats GG, et al. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling.
Cell
. 2012 Aug;150(3):533–48.
23.
Airik R, Slaats GG, Guo Z, Weiss AC, Khan N, Ghosh A, et al. Renal-retinal ciliopathy gene Sdccag8 regulates DNA damage response signaling.
J Am Soc Nephrol
. 2014 Nov;25(11):2573–83.
24.
Jain M, Kaiser RW, Bohl K, Hoehne M, Göbel H, Bartram MP, et al. Inactivation of Apoptosis Antagonizing Transcription Factor in tubular epithelial cells induces accumulation of DNA damage and nephronophthisis.
Kidney Int
. 2019 Apr;95(4):846–58.
25.
Yesil-Devecioglu T, Dayan A, Demirtunc R, Sardas S. Role of DNA repair genes XRCC3 and XRCC1 in predisposition to type 2 diabetes mellitus and diabetic nephropathy.
Endocrinol Diabetes Nutr
. 2019 Feb;66(2):90–8.
26.
Susa D, Mitchell JR, Verweij M, van de Ven M, Roest H, van den Engel S, et al. Congenital DNA repair deficiency results in protection against renal ischemia reperfusion injury in mice.
Aging Cell
. 2009 Apr;8(2):192–200.
27.
Limpose KL, Trego KS, Li Z, Leung SW, Sarker AH, Shah JA, et al. Overexpression of the base excision repair NTHL1 glycosylase causes genomic instability and early cellular hallmarks of cancer.
Nucleic Acids Res
. 2018 May;46(9):4515–32.
28.
Schupp N, Queisser N, Wolf M, Kolkhof P, Bärfacker L, Schäfer S, et al. Aldosterone causes DNA strand breaks and chromosomal damage in renal cells, which are prevented by mineralocorticoid receptor antagonists.
Horm Metab Res
. 2010 Jun;42(6):458–65.
29.
Schmid U, Stopper H, Schweda F, Queisser N, Schupp N. Angiotensin II induces DNA damage in the kidney.
Cancer Res
. 2008 Nov;68(22):9239–46.
30.
Ma Z, Wei Q, Dong G, Huo Y, Dong Z. DNA damage response in renal ischemia-reperfusion and ATP-depletion injury of renal tubular cells.
Biochim Biophys Acta
. 2014 Jul;1842(7):1088–96.
31.
Bartz RR, Fu P, Suliman HB, Crowley SD, MacGarvey NC, Welty-Wolf K, et al. Staphylococcus aureus sepsis induces early renal mitochondrial DNA repair and mitochondrial biogenesis in mice.
PLoS One
. 2014 Jul;9(7):e100912.
32.
Pressly JD, Park F. DNA repair in ischemic acute kidney injury.
Am J Physiol Renal Physiol
. 2017 Apr;312(4):F551–5.
33.
Yan M, Tang C, Ma Z, Huang S, Dong Z. DNA damage response in nephrotoxic and ischemic kidney injury.
Toxicol Appl Pharmacol
. 2016 Dec;313:104–8.
34.
Marshall CB, Pippin JW, Krofft RD, Shankland SJ. Puromycin aminonucleoside induces oxidant-dependent DNA damage in podocytes in vitro and in vivo.
Kidney Int
. 2006 Dec;70(11):1962–73.
35.
Krüger K, Thomale J, Stojanović N, Osmak M, Henninger C, Bormann S, et al. Platinum-induced kidney damage: unraveling the DNA damage response (DDR) of renal tubular epithelial and glomerular endothelial cells following platinum injury.
Biochim Biophys Acta
. 2015 Mar;1853(3):685–98.
36.
Yang Y, Liu H, Liu F, Dong Z. Mitochondrial dysregulation and protection in cisplatin nephrotoxicity.
Arch Toxicol
. 2014 Jun;88(6):1249–56.
37.
Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A, et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes.
Nature
. 2010 Jan;463(7279):360–3.
38.
Vermeij WP, Dollé ME, Reiling E, Jaarsma D, Payan-Gomez C, Bombardieri CR, et al. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice.
Nature
. 2016 Sep;537(7620):427–31.
39.
Rai P, Singh T, Lederman R, Chawla A, Kumar D, Cheng K, et al. Hyperglycemia enhances kidney cell injury in HIVAN through down-regulation of vitamin D receptors.
Cell Signal
. 2015 Mar;27(3):460–9.
40.
Hishikawa A, Hayashi K, Abe T, Kaneko M, Yokoi H, Azegami T, et al. Decreased KAT5 expression impairs DNA repair and induces altered DNA methylation in kidney podocytes.
Cell Rep
. 2019 Jan;26(5):1318–1332.e4.
41.
Schneider JG, Finck BN, Ren J, Standley KN, Takagi M, Maclean KH, et al. ATM-dependent suppression of stress signaling reduces vascular disease in metabolic syndrome.
Cell Metab
. 2006 Nov;4(5):377–89.
42.
Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage.
Science
. 2007 May;316(5828):1160–6.
43.
Jackson SP, Bartek J. The DNA-damage response in human biology and disease.
Nature
. 2009 Oct;461(7267):1071–8.
44.
Mortusewicz O, Schermelleh L, Walter J, Cardoso MC, Leonhardt H. Recruitment of DNA methyltransferase I to DNA repair sites.
Proc Natl Acad Sci USA
. 2005 Jun;102(25):8905–9.
45.
Benayoun BA, Pollina EA, Brunet A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability.
Nat Rev Mol Cell Biol
. 2015 Oct;16(10):593–610.
46.
Orlowski C, Mah LJ, Vasireddy RS, El-Osta A, Karagiannis TC. Double-strand breaks and the concept of short- and long-term epigenetic memory.
Chromosoma
. 2011 Apr;120(2):129–49.
47.
Cuozzo C, Porcellini A, Angrisano T, Morano A, Lee B, Di Pardo A, et al. DNA damage, homology-directed repair, and DNA methylation.
PLoS Genet
. 2007 Jul;3(7):e110.
48.
O’Hagan HM, Mohammad HP, Baylin SB. Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island.
PLoS Genet
. 2008 Aug;4(8):e1000155.
49.
Fatemi M, Hermann A, Pradhan S, Jeltsch A. The activity of the murine DNA methyltransferase Dnmt1 is controlled by interaction of the catalytic domain with the N-terminal part of the enzyme leading to an allosteric activation of the enzyme after binding to methylated DNA.
J Mol Biol
. 2001 Jun;309(5):1189–99.
50.
Vilkaitis G, Suetake I, Klimasauskas S, Tajima S. Processive methylation of hemimethylated CpG sites by mouse Dnmt1 DNA methyltransferase.
J Biol Chem
. 2005 Jan;280(1):64–72.
51.
Goyal R, Reinhardt R, Jeltsch A. Accuracy of DNA methylation pattern preservation by the Dnmt1 methyltransferase.
Nucleic Acids Res
. 2006 Feb;34(4):1182–8.
52.
Fatemi M, Hermann A, Gowher H, Jeltsch A. Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA.
Eur J Biochem
. 2002 Oct;269(20):4981–4.
53.
Kim GD, Ni J, Kelesoglu N, Roberts RJ, Pradhan S. Co-operation and communication between the human maintenance and de novo DNA (cytosine-5) methyltransferases.
EMBO J
. 2002 Aug;21(15):4183–95.
54.
Reddy MA, Natarajan R. Recent developments in epigenetics of acute and chronic kidney diseases.
Kidney Int
. 2015 Aug;88(2):250–61.
55.
Pattaro C, Teumer A, Gorski M, Chu AY, Li M, Mijatovic V, et al.; ICBP Consortium; AGEN Consortium; CARDIOGRAM; CHARGe-Heart Failure Group; ECHOGen Consortium. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.
Nat Commun
. 2016 Jan;7(1):10023.
56.
Sapienza C, Lee J, Powell J, Erinle O, Yafai F, Reichert J, et al. DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy.
Epigenetics
. 2011 Jan;6(1):20–8.
57.
Wing MR, Devaney JM, Joffe MM, Xie D, Feldman HI, Dominic EA, et al.; Chronic Renal Insufficiency Cohort (CRIC) Study. DNA methylation profile associated with rapid decline in kidney function: findings from the CRIC study.
Nephrol Dial Transplant
. 2014 Apr;29(4):864–72.
58.
Smyth LJ, McKay GJ, Maxwell AP, McKnight AJ. DNA hypermethylation and DNA hypomethylation is present at different loci in chronic kidney disease.
Epigenetics
. 2014 Mar;9(3):366–76.
59.
Chu AY, Tin A, Schlosser P, Ko YA, Qiu C, Yao C, et al. Epigenome-wide association studies identify DNA methylation associated with kidney function.
Nat Commun
. 2017 Nov;8(1):1286.
60.
Ko YA, Mohtat D, Suzuki M, Park AS, Izquierdo MC, Han SY, et al. Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development.
Genome Biol
. 2013;14(10):R108.
61.
Hayashi K, Sasamura H, Nakamura M, Azegami T, Oguchi H, Sakamaki Y, et al. KLF4-dependent epigenetic remodeling modulates podocyte phenotypes and attenuates proteinuria.
J Clin Invest
. 2014 Jun;124(6):2523–37.
62.
Hayashi K, Sasamura H, Nakamura M, Sakamaki Y, Azegami T, Oguchi H, et al. Renin-angiotensin blockade resets podocyte epigenome through Kruppel-like Factor 4 and attenuates proteinuria.
Kidney Int
. 2015 Oct;88(4):745–53.
63.
Zhang L, Zhang Q, Liu S, Chen Y, Li R, Lin T, et al. DNA methyltransferase 1 may be a therapy target for attenuating diabetic nephropathy and podocyte injury.
Kidney Int
. 2017 Jul;92(1):140–53.
64.
Ristola M, Arpiainen S, Saleem MA, Holthöfer H, Lehtonen S. Transcription of nephrin-Neph3 gene pair is synergistically activated by WT1 and NF-κB and silenced by DNA methylation.
Nephrol Dial Transplant
. 2012 May;27(5):1737–45.
65.
Hamatani H, Sakairi T, Ikeuchi H, Kaneko Y, Maeshima A, Nojima Y, et al. TGF-β1 alters DNA methylation levels in promoter and enhancer regions of the WT1 gene in human podocytes.
Nephrology (Carlton)
. 2019 May;24(5):575–84.
66.
Wanner N, Hartleben B, Herbach N, Goedel M, Stickel N, Zeiser R, et al. Unraveling the role of podocyte turnover in glomerular aging and injury.
J Am Soc Nephrol
. 2014 Apr;25(4):707–16.
67.
Shankland SJ, Pippin JW, Duffield JS. Progenitor cells and podocyte regeneration.
Semin Nephrol
. 2014 Jul;34(4):418–28.
68.
Nagata M. Podocyte injury and its consequences.
Kidney Int
. 2016 Jun;89(6):1221–30.
69.
Lieber MR, Ma Y, Pannicke U, Schwarz K. Mechanism and regulation of human non-homologous DNA end-joining.
Nat Rev Mol Cell Biol
. 2003 Sep;4(9):712–20.
70.
Cann KL, Dellaire G. Heterochromatin and the DNA damage response: the need to relax.
Biochem Cell Biol
. 2011 Feb;89(1):45–60.
71.
Li SY, Park J, Guan Y, Chung K, Shrestha R, Palmer MB, et al. DNMT1 in Six2 Progenitor Cells Is Essential for Transposable Element Silencing and Kidney Development.
J Am Soc Nephrol
. 2019 Apr;30(4):594–609.
72.
Feng J, Zhou Y, Campbell SL, Le T, Li E, Sweatt JD, et al. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons.
Nat Neurosci
. 2010 Apr;13(4):423–30.
73.
Cowell IG, Sunter NJ, Singh PB, Austin CA, Durkacz BW, Tilby MJ. gammaH2AX foci form preferentially in euchromatin after ionising-radiation.
PLoS One
. 2007 Oct;2(10):e1057.
74.
Kim JA, Kruhlak M, Dotiwala F, Nussenzweig A, Haber JE. Heterochromatin is refractory to gamma-H2AX modification in yeast and mammals.
J Cell Biol
. 2007 Jul;178(2):209–18.
75.
Takata H, Hanafusa T, Mori T, Shimura M, Iida Y, Ishikawa K, et al. Chromatin compaction protects genomic DNA from radiation damage.
PLoS One
. 2013 Oct;8(10):e75622.
76.
Robertson AK, Geiman TM, Sankpal UT, Hager GL, Robertson KD. Effects of chromatin structure on the enzymatic and DNA binding functions of DNA methyltransferases DNMT1 and Dnmt3a in vitro.
Biochem Biophys Res Commun
. 2004 Sep;322(1):110–8.
77.
Takeshima H, Suetake I, Shimahara H, Ura K, Tate S, Tajima S. Distinct DNA methylation activity of Dnmt3a and Dnmt3b towards naked and nucleosomal DNA.
J Biochem
. 2006 Mar;139(3):503–15.
78.
Takeshima H, Suetake I, Tajima S. Mouse Dnmt3a preferentially methylates linker DNA and is inhibited by histone H1.
J Mol Biol
. 2008 Nov;383(4):810–21.
79.
Schumacher B, Garinis GA, Hoeijmakers JH. Age to survive: DNA damage and aging.
Trends Genet
. 2008 Feb;24(2):77–85.
80.
Wu H, Humphreys BD. The promise of single-cell RNA sequencing for kidney disease investigation.
Kidney Int
. 2017 Dec;92(6):1334–42.
81.
Park J, Shrestha R, Qiu C, Kondo A, Huang S, Werth M, et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease.
Science
. 2018 May;360(6390):758–63.
82.
Hishikawa A, Hayashi K, Itoh H. Transcription Factors as Therapeutic Targets in Chronic Kidney Disease.
Molecules
. 2018 May;23(5):23.
83.
Hayashi K, Hishikawa A, Itoh H. DNA Damage and Epigenetic Changes in Kidney Diseases - Focused on Transcription Factors in Podocytes.
Curr Hypertens Rev
. 2016;12(2):105–11.
84.
Dinkova-Kostova AT, Liby KT, Stephenson KK, Holtzclaw WD, Gao X, Suh N, et al. Extremely potent triterpenoid inducers of the phase 2 response: correlations of protection against oxidant and inflammatory stress.
Proc Natl Acad Sci USA
. 2005 Mar;102(12):4584–9.
85.
Ruiz S, Pergola PE, Zager RA, Vaziri ND. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease.
Kidney Int
. 2013 Jun;83(6):1029–41.
86.
Tanaka T, Matsumoto M, Inagi R, Miyata T, Kojima I, Ohse T, et al. Induction of protective genes by cobalt ameliorates tubulointerstitial injury in the progressive Thy1 nephritis.
Kidney Int
. 2005 Dec;68(6):2714–25.
87.
Tanaka T, Kojima I, Ohse T, Inagi R, Miyata T, Ingelfinger JR, et al. Hypoxia-inducible factor modulates tubular cell survival in cisplatin nephrotoxicity.
Am J Physiol Renal Physiol
. 2005 Nov;289(5):F1123–33.
88.
Ben Chehida A, Ghali N, Ben Abdelaziz R, Ben Moussa F, Tebib N. Renal Involvement in 2 Siblings With Cockayne Syndrome.
Iran J Kidney Dis
. 2017 May;11(3):253–5.
89.
Hirooka M, Hirota M, Kamada M. Renal lesions in Cockayne syndrome.
Pediatr Nephrol
. 1988 Apr;2(2):239–43.
90.
Kralund HH, Ousager L, Jaspers NG, Raams A, Pedersen EB, Gade E, et al. Xeroderma Pigmentosum-Trichothiodystrophy overlap patient with novel XPD/ERCC2 mutation.
Rare Dis
. 2013 May;1(1):e24932.
91.
Aracil M, Dauffenbach LM, Diez MM, Richeh R, Moneo V, Leal JF, et al. Expression of XPG protein in human normal and tumor tissues.
Int J Clin Exp Pathol
. 2013;6(2):199–211.
92.
Kondo D, Noguchi A, Tamura H, Tsuchida S, Takahashi I, Kubota H, et al. Elevated Urinary Levels of 8-Hydroxy-2′-deoxyguanosine in a Japanese Child of Xeroderma Pigmentosum/Cockayne Syndrome Complex with Infantile Onset of Nephrotic Syndrome.
Tohoku J Exp Med
. 2016 Jul;239(3):231–5.
93.
Sathyanarayana V, Lee B, Wright NB, Santos R, Bonney D, Wynn R, et al. Patterns and frequency of renal abnormalities in Fanconi anaemia: implications for long-term management.
Pediatr Nephrol
. 2018 Sep;33(9):1547–51.
94.
Zhou W, Otto EA, Cluckey A, Airik R, Hurd TW, Chaki M, et al. FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair.
Nat Genet
. 2012 Jul;44(8):910–5.
95.
Alanee S, Shah S, Murali R, Rau-Murthy R, Schrader KA, Offit K. Absence of loss of heterozygosity of BRCA1 in a renal tumor from a BRCA1 germline mutation carrier.
Fam Cancer
. 2013 Mar;12(1):125–7.
96.
Kroeger PT Jr, Drummond BE, Miceli R, McKernan M, Gerlach GF, Marra AN, et al. The zebrafish kidney mutant zeppelin reveals that brca2/fancd1 is essential for pronephros development.
Dev Biol
. 2017 Aug;428(1):148–63.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.