Background/Aims: Renal damage from ethylene glycol and primary hyperoxaluria is linked to accumulation of calcium oxalate monohydrate (COM) crystals in the renal proximal tubule (PT). In vitro studies have shown that aluminum citrate (AC), uniquely among citrate salts, blocks COM cytotoxicity to tubular cells. These studies were designed to evaluate the interaction of COM with membrane phospholipids and the ability of AC to reduce COM toxicity by interfering with this interaction. Methods: Interaction of COM with phospholipids was assessed using differential scanning calorimetric analysis of structural changes in specific liposomes. Interaction of COM with cell membranes was studied by measuring binding of radiolabeled crystals by human PT (HPT) cells. Results: Analysis of liposomes prepared from phosphatidylserine (PS) or phosphatidylcholine (PC) showed that COM interfered with the gel-liquid transition of PS liposomes, but not that of PC liposomes. AC reversed the COM-induced changes in liposomal structure. AC inhibited the binding of [14C]-COM by HPT cells in a concentration-dependent manner. AC blocked COM binding by interacting with the crystal surface and not the cell membrane. Conclusion: These results indicate that AC blocks the binding of COM by PT cells, and consequently its cytotoxicity, by attaching to the surface of the crystal. Thus, AC, or a related compound that works by the same mechanism, could be a useful adjunct therapy to reduce the renal damage produced by severe hyperoxaluria.

Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.