Background/Aims: Insulin is synthesised as a pro-hormone with an interconnecting C-peptide, cleaved during post-translational modification. This review discusses growing evidence which indicates that C-peptide is biologically active, benefiting microvascular complications associated with diabetes. Methods: To explore the renoprotective role of C-peptide in diabetic nephropathy (DN), we reviewed the literature using PubMed for English language articles that contained key words related to C-peptide, kidney and DN. Results: Numerous studies have demonstrated that C-peptide ameliorates a number of the structural and functional renal disturbances associated with uncontrolled hyperglycaemia in human and animal models of type 1 diabetes mellitus that lead to the development and progression of nephropathy, including abrogation of glomerular hyperfiltration, reduced microalbuminuria, decreased mesangial expansion and increased endothelial nitric oxide synthase levels. The in vitro exposure of kidney proximal tubular cells to physiological concentrations of C-peptide activates extracellular signal-regulated kinase, phosphatidylinositol 3-kinase, protein kinase C, elevates intracellular calcium, and stimulates transcription factors NF-ĸB and peroxisome proliferator-activated receptor-γ. Conclusion: Burgeoning studies suggest that C-peptide is more than merely a link between the A and B chains of the proinsulin molecule and represents a future therapeutic tool in reducing complications of DN.

1.
Rubenstein AH, Melani F, Pilkis S, Steiner DF: Proinsulin. Secretion, metabolism, immunological and biological properties. Postgrad Med J 1969;45:476–481.
2.
Wójcikowski C, Maier V, Dominiak K, Fussgänger R, Pfeiffer EF: Effects of synthetic rat C-peptide in normal and diabetic rats. Diabetologia 1983;25:288–290.
3.
Samnegård B, Jacobson SH, Jaremko GH, Johansson B-L, Sjöquist B: Effects of C-peptide on glomerular and renal size and renal function in diabetic rats. Kidney Int 2001;60:1258–1265.
4.
Sjoquist M, Huang W, Johansson B-L: Effects of C-peptide on renal function at the early stage of experimental diabetes. Kidney Int 1998;54:758–764.
5.
Maezawa Y, Yokote K, Sonezaki K, Fujimoto M, Kobayashi K, Kawamura H, Tokuyama T, Takemoto M, Ueda S, Kuwaki T, Mori S, Wahren J, Saito Y: Influence of C-peptide on early glomerular changes in diabetic mice. Diabetes Metab Res Rev2006;22:313–322.
6.
Samnegård B, Jacobson SH, Jaremko G, Johansson BL, Ekberg K, Isaksson B, Eriksson L, Wahren J, Sjöquist M: C-peptide prevents glomerular hypertrophy and mesangial matrix expansion in diabetic rats. Nephrol Dial Transplant 2005;20:532–538.
7.
Wallerath T, Kunt T, Forst T: Stimulation of endothelial nitric oxide synthase by proinsulin C-peptide. Nitric Oxide 2003;9:95–102.
8.
Al-Rasheed NM, Willars GB, Brunskill NJ: C-peptide signals via Gαi to protect against TNF-α-mediated apoptosis of opossum kidney proximal tubular cells. J Am Soc Nephrol 2006;17:986–995.
9.
Hills CE, Al-Rasheed N, Al-Rasheed N, Willars GB, Brunskill NJ: C-peptide reverses TGF-β1-induced changes in renal proximal tubular cells: implications for treatment of diabetic nephropathy. Am J Physiol Renal Physiol 2009;296:F614–F621.
10.
United States Renal Data System (USRDS): Annual data report: atlas of end-stage renal disease in the United States. Bethesda, National Institute of Health/National Institute of Diabetes and Digestive and Kidney Disease, 2003.
11.
Soldatos G, Cooper ME: DN: Important pathophysiologic mechanisms. Diabetes Res Clin Pract 2008;82(suppl 1):S75–S79.
12.
Mauer SM, Steffes MW, Ellis EN: Structural-functional relationships in DN. J Clin Invest 1984;74:1143–1155.
13.
Hostetter TH, Troy JL, Brenner BM: Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int 1981;19:410–415.
14.
Steffes MW, Osterby R, Chavers B, Mauer SM: Mesangial expansion as a central mechanism for loss of kidney function in diabetic patients. Diabetes 1989;38:1077–1081.
15.
Krolewski AS, Laffel LM, Krolewski M, Quinn M, Warram JH: Glycosylated hemoglobin and the risk of microalbuminuria in patients with insulin-dependent diabetes mellitus. N Engl J Med 1995;332:1251–1255.
16.
Gnudi L, Gruden G, Viberti G: Pathogenesis of diabetic nephropathy; in Pickup JC, Williams G (eds): Textbook of Diabetes, ed 3. Oxford, Blackwell Science, 2003, pp 52.1–53.21.
17.
Fiorina P, Folli F, Maffi P, Placidi C, Venturini M, Finzi G, Bertuzzi F, Davalli A, D’Angelo A, Socci C, Gremizzi C, Orsenigo E, La Rosa S, Ponzoni M, Cardillo M, Scalamogna M, Del Maschio A, Capella C, Di Carlo V, Secchi A: Islet transplantation improves vascular diabetic complications in patients with diabetes who underwent kidney transplantation: a comparison between kidney-pancreas and kidney-alone transplantation. Transplantation 2003;27:1296–1301.
18.
Lee TC, Barshes NR, Agee EE, O’Mahoney CA, Brunicardi FC, Goss JA: The effect of whole organ pancreas transplantation and PIT on diabetic complications. Curr Diab Rep 2006;6:323–327.
19.
Johansson BL, Sjöberg S, Wahren J: The influence of human C-peptide on renal function and glucose utilization in type 1 (insulin-dependent) diabetic patients. Diabetolo- gia 1992;35:121–128.
20.
Johansson BL, Kernell A, Sjöberg S, Wahren J: Influence of combined C-peptide and insulin administration on renal function and metabolic control in diabetes type 1. J Clin Endocrinol Metab 1993;77:976–981.
21.
Johansson BL, Borg K, Fernqvist-Forbes E, Kernell A, Odergren T, Wahren J: Beneficial effects of C-peptide on incipient nephropathy and neuropathy in patients with type 1 diabetes mellitus. Diabet Med 2000;17:181–189.
22.
Nordquist L, Brown R, Fasching A, Persson P, Palm F: Proinsulin C-peptide reduces diabetes-induced glomerular hyperfiltration via efferent arteriole dilation and inhibition of tubular sodium reabsorption. Am J Physiol Renal Physiol 2009;297:F1265–F1272.
23.
Nordquist L, Moe E, Sjöquist M: The C-peptide fragment EVARQ reduces glomerular hyperfiltration in streptozotocin-induced diabetic rats. Diabetes Metab Res Rev 2007;23:400–405.
24.
Hills CE, Brunskill NJ: Cellular and physiological effects of C-peptide. Clin Sci 2009;116:565–574.
25.
Hills CE, Brunskill NJ: C-peptide and its intracellular signalling. Rev Diabet Stud 2009;6:138–147.
26.
Flatt PR, Swanston-Flatt SK, Hampton SM, Bailey CJ, Marks V: Specific binding of the C-peptide of proinsulin to cultured B cells from a transplantable rat islet cell tumor. Biosci Rep 1986;6:193–199.
27.
Rigler R, Pramanik A, Jonasson P, Kratz G, Jansson O, Nygren PA, Stahl S, Ekberg K, Johansson BL, Uhlen S, Uhlen M, Jornvall H, Wahren J: Specific binding of proinsulin C-peptide to human cell membranes. Proc Natl Acad Sci USA 1999;96:13318–13323.
28.
Hoogwerf BJ, Bantle JP, Gaenslen HE, Greenberg BZ, Senske BJ, Francis R, Goetz FC: Infusion of synthetic human C-peptide does not affect plasma glucose, serum insulin, or plasma glucagon in healthy subjects. Metabolism 1986;35:122–125.
29.
Ohtomo Y, Bergman T, Johansson BL, Jörnvall H, Wahren J: Differential effects of proinsulin C-peptide fragments on Na+,K+-ATPase activity of renal tubule segments. Diabetologia 1998;41:287–291.
30.
Vague P, Coste TC, Jannot MF, Raccah D, Tsimaratos M: C-peptide, Na+,K+-ATPase, and diabetes. Exp Diabesity Res 2004;1:37–50.
31.
Zhong Z, Kotova O, Davidescu A, Ehrén I, Ekberg K, Jörnvall H, Wahren J, Chibalin AV: C-peptide stimulates Na+,K+-ATPase via activation of ERK-1/2 MAP kinases in human renal tubular cells. Cell Mol Life Sci 2004;61:2782–2790.
32.
Tsimaratos M, Roger F, Chabardès D, Mordasini D, Hasler U, Doucet A, Martin PY, Féraille E: C-peptide stimulates Na+,K+-ATPase activity via PKC-α in rat medullary thick ascending limb. Diabetologia 2003;46:124–131.
33.
Zhong Z, Davidescu A, Ehrén I, Ekberg K, Jörnvall H, Wahren J, Chibalin AV: C peptide stimulates ERK-1/2 and JNK MAP kinases via activation of protein kinase C in human renal tubular cells. Diabetologia 2005;48:187–197.
34.
Forst T, Dufayet De La Tour D, Kunt T: Effects of proinsulin C-peptide on nitric oxide, microvascular blood flow and erythrocyte Na+,K+-ATPase activity in diabetes mellitus type 1. Clin Sci 2000;98:283–290.
35.
Ohtomo Y, Aperia A, Sahlgren B, Johansson BL, Wahren J: C peptide stimulates rat renal tubular Na+/K+-ATPase activity in synergism with neuropeptide Y. Diabetologia 1996;39:199–205.
36.
Chen CC: Differentiation of renal Na+-K+-ATPase in control and streptozotocin-induced diabetic mice by G-protein acting toxins and phorbol esters. Eur J Pharmacol 1992;225:275–279.
37.
Kunt T, Schneider S, Pfutzner A: The effect of human proinsulin C peptide on erythrocyte deformability in patients with type 1 diabetes mellitus. Diabetologia 1999;42:465–471.
38.
Hach T, Forst T, Kunt T, Ekberg K, Pfützner A, Wahren J: C-peptide and its C-terminal fragments improve erythrocyte deformability in type 1 diabetes patients. Exp Diabetes Res 2008;2008:730594.
39.
Meyer JA, Froelich JM, Reid GE, Karunarathne WK, Spence DM: Metal-activated C-peptide facilitates glucose clearance and the release of a nitric oxide stimulus via the GLUT-1 transporter. Diabetologia 2008;51:175–182.
40.
Freedman JE, Loscalzo J, Barnard MR: Nitric oxide released from activated platelets inhibits platelet recruitment. J Clin Invest 1997;100:350–356.
41.
Kotsis DH, Spence DM: Detection of ATP-induced nitric oxide in a biomimetic circulatory vessel containing an immobilized endothelium. Anal Chem 2003;75:145–151.
42.
Kitamura T, Kimura K, Makondo K, Furuya DT, Suzuki M, Yoshida T, Saito M: Proinsulin C peptide increases nitric oxide production by enhancing mitogen-activated protein kinase-dependent transcription of endothelial nitric oxide synthase in aortic endothelial cells of Wistar rats. Diabetologia 2003;46:1698–1705.
43.
Wallerath T, Kunt T, Forst T, Closs EI, Lehmann R, Flohr T, Gabriel M, Schäfer D, Göpfert A, Pfützner A, Beyer J, Förstermann U: Stimulation of endothelial nitric oxide synthase by proinsulin C-peptide. Nitric Oxide 2003;9:95–102.
44.
Subasinghe W, Spence DM: Simultaneous determination of cell aging and ATP release from erythrocytes and its implications in type 2 diabetes. Anal Chim Acta 2008;618:227–233.
45.
Meyer JA, Subasinghe W, Sima AA: Zinc-activated C-peptide resistance to the type 2 diabetic erythrocyte is associated with hyperglycemia-induced phosphatidylserine externalization and reversed by metformin. Mol Biosyst 2009;5:1157–1162.
46.
Freyburger G, Gin A, Heape A: Phospholipid and fatty acid composition of erythrocytes in type 1 and type 2 diabetes. Metab Clin Exp 1989;38:673–678.
47.
Dumaswala UJ, Wilson MJ, Wu YL, Wykle J, Zhuo L, Douglass LM, Daleke DL: Glutathione loading prevents free radical injury in red blood cells after storage. Free Radic Res 2000;33:517–529.
48.
Magalhães FO, Gouveia LM, Torquato MT: Metformin increases blood flow and forearm glucose uptake in a group of non-obese type 2 diabetes patients. Horm Metab Res 2006;38:513–517.
49.
Muller S, Denet S, Candiloros H, Barrois R, Wiernsperger N, Donner M, Drouin P: Action of metformin on erythrocyte membrane fluidity in vitro and in vivo. Eur J Pharmacol 1997;337:103–110.
50.
Hohenstein B, Hugo CP, Hausknecht B, Boehmer KP, Riess RH, Schmieder RE: Analysis of NO synthase expression and clinical risk factors in human diabetic nephropathy. Nephrol Dial Transplant 2008;23:1346–1354.
51.
Kamikawa A, Ishii T, Shimada K, Makondo K, Inanami O, Sakane N, Yoshida T, Saito M, Kimura K: Proinsulin C-peptide abrogates type-1 diabetes-induced increase of renal endothelial nitric oxide synthase in rats. Diabetes Metab Res Rev 2008;24:331–338.
52.
Samnegård B, Jacobson SH, Johansson BL, Ekberg K, Isaksson B, Wahren J, Sjöquist M: C-peptide and captopril are equally effective in lowering glomerular hyperfiltration in diabetic rats. Nephrol Dial Transplant 2004;6:1385–1391.
53.
Katz A, Caramori ML, Sisson-Ross S, Groppoli T, Basgen JM, Mauer M: An increase in the cell component of the cortical interstitium antedates interstitial fibrosis in type 1 diabetic patients. Kidney Int 2002;61:2058–2066.
54.
Hills CE, Squires PE: TGF-β1-induced epithelial-to-mesenchymal transition and therapeutic intervention in diabetic nephropathy. Am J Nephrol 2010;31:68–74.
55.
Ziyadeh FN: The extracellular matrix in DN. Am J Kidney Dis 1993;22:736–744.
56.
Dennler S, Itoh S, Vivien D, Dijke P, Huet S, Gauthier J: Direct binding of Smad 3 and Smad 4 to critical TGF-β inducible elements in the promoter of the human plasminogen activator inhibitor-type 1 gene. EMBO J 1998;17:3091–3100.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.