The development of hereditary von Hippel-Lindau (VHL) disease and the majority of sporadic kidney cancers are due to the functional inactivation of the VHL gene. The product of the VHL gene, pVHL, in association with elongins B and C, cullin 2, and Rbx1 form an E3 ubiquitin-ligase complex VEC that targets the alpha subunits of hypoxia-inducible factor (HIF) for ubiquitination. Ubiquitin-tagged HIF-α proteins are subsequently degraded by the common 26S proteasome. pVHL functions as the substrate-docking interface that specifically recognizes prolyl-hydroxylated HIF-α. This hydroxylation occurs only in the presence of oxygen or normoxia. Thus, under hypoxia, HIF-α subunits are no longer subjected to degradation and are thereby able to dimerize with the common and constitutively stable β subunits. The heterodimeric HIFs upregulate a myriad of hypoxia-inducible genes, triggering our physiologic response to hypoxia. Inappropriate accumulations of HIF-α in VHL disease are believed to contribute to the pathogenesis via the upregulation of several of these HIF target genes. Our current molecular understanding of the roles of HIF and pVHL in the development of VHL-associated clear-cell renal cell carcinoma (CC-RCC) is the focus of this review.

1.
Wingo PA, Tong T, Bolden S: Cancer statistics, 1995. CA Cancer J Clin 1995;45:8–30.
2.
Linehan WM, Lerman MI, Zbar B: Identification of the von Hippel-Lindau (VHL) gene. JAMA 1995;273:564–570.
3.
Walther M, Lubensky I, Venzon D, Zbar B, Linehan W: Prevalence of microscopic lesions in grossly normal renal parenchyma from patients with von Hippel-Lindau disease, sporadic renal cell carcinoma and no renal disease: Clinical implications. J Urol 1995;154:2010–2014.
4.
Lubensky IA, Gnarra JR, Bertheau P, Walther MM, Linehan WM, Zhuang Z: Allelic deletions of the VHL gene detected in multiple microscopic clear cell renal lesions in von Hippel-Lindau disease patients. Am J Pathol 1996;149:2089–2094.
5.
Gnarra JR, Tory K, Weng Y, Schmidt L, Wei MH, Li H, Latif F, Liu S, Chen F, Duh FM, et al: Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet 1994;7:85–90.
6.
Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, Samid D, Duan DS, Gnarra JR, Linehan WM, et al: Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA 1994;91:9700–9704.
7.
Cohen AJ, Li FP, Berg S, Marchetto DJ, Tsai S, Jacobs SC, Brown RS: Hereditary renal-cell carcinoma associated with a chromosomal translocation. N Engl J Med 1979;301:592–595.
8.
Zbar B, Brauch H, Talmadge C, Linehan M: Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. Nature 1987;327:721–724.
9.
Kovacs G, Brusa P, De Riese W: Tissue-specific expression of a constitutional 3;6 translocation: Development of multiple bilateral renal-cell carcinomas. Int J Cancer 1989;43:422–427.
10.
Choyke PL, Glenn GM, Walther MM, Zbar B, Linehan WM: Hereditary renal cancers. Radiology 2003;226:33–46.
11.
Parry L, Maynard JH, Patel A, Clifford SC, Morrissey C, Maher ER, Cheadle JP: Analysis of the TSC1 and TSC2 genes in sporadic renal cell carcinomas. Br J Cancer 2001;85:1226–1230.
12.
Krymskaya VP: Tumour suppressors hamartin and tuberin: Intracellular signalling. Cell Signal 2003;15:729–739.
13.
Schmidt L, Duh F, Chen F, Kishida T, Glenn G, Choyke P, Scherer S, Zhuang Z, Lubensky I, Dean M, et al: Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 1997;16:68–73.
14.
Tomlinson IP, Alam NA, Rowan AJ, Barclay E, Jaeger EE, Kelsell D, Leigh I, Gorman P, Lamlum H, Rahman S, et al: Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 2002;30:406–410.
15.
Eng C, Kiuru M, Fernandez MJ, Aaltonen LA: A role for mitochondrial enzymes in inherited neoplasia and beyond. Nat Rev Cancer 2003;3:193–202.
16.
Nickerson ML, Warren MB, Toro JR, Matrosova V, Glenn G, Turner ML, Duray P, Merino M, Choyke P, Pavlovich CP, et al: Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube syndrome. Cancer Cell 2002;2:157–164.
17.
Davis CJ Jr, Mostofi FK, Sesterhenn IA: Renal medullary carcinoma: The seventh sickle cell nephropathy. Am J Surg Pathol 1995;19:1–11.
18.
Swartz MA, Karth J, Schneider DT, Rodriguez R, Beckwith JB, Perlman EJ: Renal medullary carcinoma: Clinical, pathologic, immunohistochemical, and genetic analysis with pathogenetic implications. Urology 2002;60:1083–1089.
19.
Lynch HT, Smyrk T: Hereditary nonpolyposis colorectal cancer (Lynch syndrome): An updated review. Cancer 1996;78:1149–1167.
20.
Lynch HT, Lynch JF: Hereditary nonpolyposis colorectal cancer. Semin Surg Oncol 2000;18:305–313.
21.
Maher E, Kaelin WG: Von Hippel-Lindau disease. Medicine (Baltimore) 1997;76:381–391.
22.
Iliopoulos O, Kaelin WG: Von Hippel-Lindau disease; in Fisher DE (ed): Hereditary Cancer. Clifton, Humana Press, 2000.
23.
Maher ER, Yates JR, Harries R, Benjamin C, Harris R, Moore AT, Ferguson-Smith MA: Clinical features and natural history of von Hippel-Lindau disease. Q J Med 1990;77:1151–1163.
24.
Maher ER, Webster AR, Moore AT: Clinical features and molecular genetics of von Hippel-Lindau disease. Ophthalmic Genet 1995;16:79–84.
25.
Ivan M, Kaelin WG Jr: The von Hippel-Lindau tumor suppressor protein. Curr Opin Genet Dev 2001;11:27–34.
26.
Richards FM, Webster AR, McMahon R, Woodward ER, Rose S, Maher ER: Molecular genetic analysis of von Hippel-Lindau disease. J Intern Med 1998;243:527–533.
27.
Lonser RR, Glenn GM, Walther M, Chew EY, Libutti SK, Linehan WM, Oldfield EH: Von Hippel-Lindau disease. Lancet 2003;361:2059–2067.
28.
Leung SK, Ohh M: Playing tag with HIF: The VHL story. J Biomed Biotechnol 2002;2:131–135.
29.
Kondo K, Kaelin WG Jr: The von Hippel-Lindau tumor suppressor gene. Exp Cell Res 2001;264:117–125.
30.
Stolle C, Glenn G, Zbar B, Humphrey J, Choyke P, Walther M, Pack S, Hurley K, Andrey C, Klausner R, Linehan W: Improved detection of germline mutations in the von Hippel-Lindau disease tumor suppressor gene. Hum Mutat 1998;12:417–423.
31.
Ohh M, Kaelin WG Jr: The von Hippel-Lindau tumour suppressor protein: New perspectives. Mol Med Today 1999;5:257–263.
32.
Chen F, Kishida T, Yao M, Hustad T, Glavac D, Dean M, Gnarra JR, Orcutt ML, Duh FM, Glenn G, et al: Germline mutations in the von Hippel-Lindau disease tumor suppressor gene: Correlations with phenotype. Hum Mutat 1995;5:66–75.
33.
Zbar B, Kishida T, Chen F, Schmidt L, Maher ER, Richards FM, Crossey PA, Webster AR, Affara NA, Ferguson-Smith MA, et al: Germline mutations in the von Hippel-Lindau (VHL) gene in families from North America, Europe, and Japan. Hum Mutat 1996;8:348–357.
34.
Kaelin WG Jr: Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer 2002;2:673–682.
35.
Seizinger BR, Rouleau GA, Ozelius LJ, Lane AH, Farmer GE, Lamiell JM, Haines J, Yuen JW, Collins D, Majoor-Krakauer D, et al: Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 1988;332:268–269.
36.
Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML, Stackhouse T, Kuzmin I, Modi W, Geil L, et al: Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 1993;260:1317–1320.
37.
Renbaum P, Duh FM, Latif F, Zbar B, Lerman M, Kuzmin I: Isolation and characterization of the full-length 3′ untranslated region of the human von Hippel-Lindau tumor suppressor gene. Hum Genet 1996;98:666–671.
38.
Zatyka M, Morrissey C, Kuzmin I, Lerman MI, Latif F, Richards FM, Maher ER: Genetic and functional analysis of the von Hippel-Lindau (VHL) tumour suppressor gene promoter. J Med Genet 2002;39:463–472.
39.
Schoenfeld A, Davidowitz EJ, Burk RD: A second major native von Hippel-Lindau gene product, initiated from an internal translation start site, functions as a tumor suppressor. Proc Natl Acad Sci USA 1998;95:8817–8822.
40.
Iliopoulos O, Ohh M, Kaelin W: pVHL19 is a biologically active product of the von Hippel-Lindau gene arising from internal translation initiation. Proc Natl Acad Sci USA 1998;95:11661–11666.
41.
Blankenship C, Naglich J, Whaley J, Seizinger B, Kley N: Alternate choice of initiation codon produces a biologically active product of the von Hippel Lindau gene with tumor suppressor activity. Oncogene 1999;18:1529–1535.
42.
Iliopoulos O, Kibel A, Gray S, Kaelin WG: Tumor suppression by the human von Hippel-Lindau gene product. Nat Med 1995;1:822–826.
43.
Crossey PA, Richards FM, Foster K, Green JS, Prowse A, Latif F, Lerman MI, Zbar B, Affara NA, Ferguson-Smith MA, et al: Identification of intragenic mutations in the von Hippel-Lindau disease tumor suppressor gene and correlation with disease phenotype. Hum Mol Genet 1994;3:1303–1308.
44.
Gnarra JR, Zhou S, Merrill MJ, Wagner J, Krumm A, Papavassiliou E, Oldfield EH, Klausner RD, Linehan WM: Post-transcriptional regulation of vascular endothelial growth factor mRNA by the VHL tumor suppressor gene product. Proc Natl Acad Sci USA 1996;93:10589–10594.
45.
Kessler P, Vasavada S, Rackley R, Stackhouse T, Duh F, Latif F, Lerman M, Zbar B, Williams B: Expression of the von Hippel-Lindau tumor suppressor gene, VHL, in human fetal kidney and during mouse embryogenesis. Mol Med 1995;1:457–466.
46.
Richards F, Schofield P, Fleming S, Maher E: Expression of the von Hippel-Lindau disease tumour suppressor gene during human embryogenesis. Hum Mol Genet 1996;5:639–644.
47.
Gnarra J, Ward J, Porter F, Wagner J, Devor D, Grinberg A, Emmert-Buck M, Westphal H, Klausner R, Linehan W: Defective placental vasculogenesis causes embryonic lethality in VHL-deficient mice. Proc Natl Acad Sci USA 1997;94:9102–9107.
48.
Haase VH, Glickman JN, Socolovsky M, Jaenisch R: Vascular tumors in livers with targeted inactivation of the von Hippel-Lindau tumor suppressor. Proc Natl Acad Sci USA 2001;98:1583–1588.
49.
Lee JY, Dong SM, Park WS, Yoo NJ, Kim CS, Jang JJ, Chi JG, Zbar B, Lubensky I, Linehan W, et al: Loss of heterozygosity and somatic mutations of the VHL tumor suppressor gene in sporadic cerebellar hemangioblastomas. Cancer Res 1998;58:504–508.
50.
Vortmeyer A, Gnarra J, Emmert-Buck M, Katz D, Linehan W, Oldfield E, Zhuang Z: Von Hippel-Lindau gene deletion detected in the stromal cell component of a cerebellar hemangioblastoma associated with von Hippel-Lindau disease. Hum Pathol 1997;28:540–543.
51.
Lach B, Gregor A, Rippstein P, Omulecka A: Angiogenic histogenesis of stromal cells in hemangioblastoma: Ultrastructural and immunohistochemical study. Ultrastruct Pathol 1999;23:299–310.
52.
Corless CL, Kibel A, Iliopoulos O, Kaelin WG Jr: Immunostaining of the von Hippel-Lindau gene product (pVHL) in normal and neoplastic human tissues. Hum Pathol 1997;28:459–464.
53.
Los M, Jansen GH, Kaelin WG, Lips CJ, Blijham GH, Voest EE: Expression pattern of the von Hippel-Lindau protein in human tissues. Lab Invest 1996;75:231–238.
54.
Ohh M, Yauch RL, Lonergan KM, Whaley JM, Stemmer-Rachamimov AO, Louis DN, Gavin BJ, Kley N, Kaelin WG Jr, Iliopoulos O: The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol Cell 1998;1:959–968.
55.
Pause A, Lee S, Worrell RA, Chen DY, Burgess WH, Linehan WM, Klausner RD: The von Hippel-Lindau tumor suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc Natl Acad Sci USA 1997;94:2156–2161.
56.
Esteban-Barragan MA, Avila P, Alvarez-Tejado M, Gutierrez MD, Garcia-Pardo A, Sanchez-Madrid F, Landazuri MO: Role of the von Hippel-Lindau tumor suppressor gene in the formation of beta1-integrin fibrillar adhesions. Cancer Res 2002;62:2929–2936.
57.
Shiao YH, Resau JH, Nagashima K, Anderson LM, Ramakrishna G: The von Hippel-Lindau tumor suppressor targets to mitochondria. Cancer Res 2000;60:2816–2819.
58.
Kibel A, Iliopoulos O, DeCaprio JA, Kaelin WG Jr: Binding of the von Hippel-Lindau tumor suppressor protein to elongins B and C. Science 1995;269:1444–1446.
59.
Duan DR, Pause A, Burgess W, Aso T, Chen DY, Garrett KP, Conaway RC, Conaway JW, Linehan WM, Klausner RD: Inhibition of transcriptional elongation by the VHL tumor suppressor protein. Science 1995;269:1402–1406.
60.
Lonergan KM, Iliopoulos O, Ohh M, Kamura T, Conaway RC, Conaway JW, Kaelin WG Jr: Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. Mol Cell Biol 1998;18:732–741.
61.
Deshaies R: SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 1999;15:435–467.
62.
Ciechanover A, Orian A, Schwartz AL: Ubiquitin-mediated proteolysis: Biological regulation via destruction. Bioessays 2000;22:442–451.
63.
Pause A, Peterson B, Schaffar G, Stearman R, Klausner R: Studying interactions of four proteins in the yeast two-hybrid system: Structural resemblance of the pVHL/elongin BC/hCUL-2 complex with the ubiquitin ligase complex SKP1/cullin/F-box protein. Proc Natl Acad Sci USA 1999;96:9533–9538.
64.
Kamura T, Koepp DM, Conrad MN, Skowyra D, Moreland RJ, Iliopoulos O, Lane WS, Kaelin WG Jr, Elledge SJ, Conaway RC, et al: Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 1999;284:657–661.
65.
Kishida T, Stackhouse TM, Chen F, Lerman MI, Zbar B: Cellular proteins that bind the von Hippel-Lindau disease gene product: Mapping of binding domains and the effect of missense mutations. Cancer Res 1995;55:4544–4548.
66.
Ohta T, Michel JJ, Schottelius AJ, Xiaong Y: ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol Cell 1999;3:535–541.
67.
Tan P, Fuchs SY, Chen A, Wu K, Gomez C, Ronai Z, Pan ZQ: Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of lRBBB. Mol Cell 1999;3:527–533.
68.
Skowyra D, Koepp DM, Kamura T, Conrad MN, Conaway RC, Conaway JW, Elledge SJ, Harper JW: Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1. Science 1999;284:662–665.
69.
Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW, Elledge SJ: SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 1996;86:263–274.
70.
Stebbins CE, Kaelin WG Jr, Pavletich NP: Structure of the VHL-elonginC-elonginB complex: Implications for VHL tumor suppressor function. Science 1999;284:455–461.
71.
Hansen WJ, Ohh M, Moslehi J, Kondo K, Kaelin WG Jr, Welch WJ: Diverse effects of mutations in exon II of the von Hippel-Lindau (VHL) tumor suppressor gene on the interaction of pVHL with the cytosolic chaperonin and pVHL-dependent ubiquitin ligase activity. Mol Cell Biol 2002;22:1947–1960.
72.
Ohh M, Takagi Y, Aso T, Stebbins C, Pavletich N, Zbar B, Conaway R, Conaway J, Kaelin W Jr: Synthetic peptides define critical contacts between elongin C, elongin B, and the von Hippel-Lindau protein. J Clin Invest 1999;104:1583–1591.
73.
Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Chau V, Kaelin WG Jr: Ubiquitination of HIF requires direct binding to the von Hippel-Lindau protein beta domain. Nat Cell Biol 2000;2:423–427.
74.
Semenza G: Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 1999;15:551–578.
75.
Semenza G: Perspectives on oxygen sensing. Cell 1999;98:281–284.
76.
Wenger R: Mammalian oxygen sensing, signalling and gene regulation. J Exp Biol 2000;203:1253–1263.
77.
Zhu H, Bunn F: Oxygen sensing and signaling: Impact on the regulation of physiologically important genes. Respir Physiol 1999;115:239–247.
78.
Wiener CM, Booth G, Semenza GL: In vivo expression of mRNAs encoding hypoxia-inducible factor 1. Biochem Biophys Res Commun 1996;225:485–488.
79.
Hogenesch JB, Chan WK, Jackiw VH, Brown RC, Gu YZ, Pray-Grant M, Perdew GH, Bradfield CA: Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J Biol Chem 1997;272:8581–8593.
80.
Cramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V, et al: HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 2003;112:645–657.
81.
Wiesener MS, Turley H, Allen WE, Willam C, Eckardt KU, Talks KL, Wood SM, Gatter KC, Harris AL, Pugh CW, et al: Induction of endothelial PAS domain protein-1 by hypoxia: Characterization and comparison with hypoxia-inducible factor-1alpha. Blood 1998;92:2260–2268.
82.
Ema M, Hirota K, Mimura J, Abe H, Yodoi J, Sogawa K, Poellinger L, Fujii-Kuriyama Y: Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: Their stabilization and redox signal-induced interaction with CBP/p300. EMBO J 1999;18:1905–1914.
83.
Tian H, McKnight SL, Russell DW: Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 1997;11:72–82.
84.
Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y: A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA 1997;94:4273–4278.
85.
Peng J, Zhang L, Drysdale L, Fong GH: The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling. Proc Natl Acad Sci USA 2000;97:8386–8391.
86.
Maynard MA, Qi H, Chung J, Lee EH, Kondo Y, Hara S, Conaway RC, Conaway JW, Ohh M: Multiple splice variants of the human HIF-3alpha locus are targets of the VHL E3 ubiquitin ligase complex. J Biol Chem 2003;278:11032–11040.
87.
Makino Y, Kanopka A, Wilson WJ, Tanaka H, Poellinger L: Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3alpha locus. J Biol Chem 2002;277:32405–32408.
88.
Wang GL, Semenza GL: Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 1995;270:1230–1237.
89.
Hara S, Hamada J, Kobayashi C, Kondo Y, Imura N: Expression and characterization of hypoxia-inducible factor (HIF)-3alpha in human kidney: Suppression of HIF-mediated gene expression by HIF-3alpha. Biochem Biophys Res Commun 2001;287:808–813.
90.
Gu YZ, Moran SM, Hogenesch JB, Wartman L, Bradfield CA: Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr 1998;7:205–213.
91.
Semenza GL: HIF-1, O2, and the 3 PHDs: How animal cells signal hypoxia to the nucleus [letter; comment]. Cell 2001;107:1–3.
92.
Hirose K, Morita M, Ema M, Mimura J, Hamada H, Fujii H, Saijo Y, Gotoh O, Sogawa K, Fujii-Kuriyama Y: cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS factor (Arnt2) with close sequence similarity to the aryl hydrocarbon receptor nuclear translocator (Arnt). Mol Cell Biol 1996;16:1706–1713.
93.
Takahata S, Sogawa K, Kobayashi A, Ema M, Mimura J, Ozaki N, Fujii-Kuriyama Y: Transcriptionally active heterodimer formation of an Arnt-like PAS protein, Arnt3, with HIF-1α, HLF, and clock. Biochem Biophys Res Commun 1998;248:789–794.
94.
Cockman M, Masson N, Mole D, Jaakkola P, Chang G, Clifford S, Maher E, Pugh C, Ratcliffe P, Maxwell P: Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem 2000;275:25733–25741.
95.
Tanimoto K, Makino Y, Pereira T, Poellinger L: Mechanism of regulation of the hypoxia-inducible factor-1alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J 2000;19:4298–4309.
96.
Sutter C, Laughner E, Semenza G: Hypoxia-inducible factor 1alpha protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations. Proc Natl Acad Sci USA 2000;97:4748–4753.
97.
Kallio P, Wilson W, O’Brien S, Makino Y, Poellinger L: Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway. J Biol Chem 1999;274:6519–6525.
98.
Salceda S, Caro J: Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions: Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 1997;272:22642–22647.
99.
Huang LE, Gu J, Schau M, Bunn HF: Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 1998;95:7987–7992.
100.
Srinivas V, Zhang L, Zhu X, Caro J: Characterization of an oxygen/redox-dependent degradation domain of hypoxia-inducible factor alpha (HIF-alpha) proteins. Biochem Biophys Res Commun 1999;260:557–561.
101.
O’Rourke J, Tian YM, Ratcliffe PJ, Pugh CW: Oxygen-regulated and transactivation domains in endothelial PAS protein 1: Comparison with hypoxia-inducible factor-1α. J Biol Chem 1999;274:2060–2071.
102.
Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr: HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science 2001;292:464–468.
103.
Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, et al: Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001;292:468–472.
104.
Masson N, Willam C, Maxwell PH, Pugh CW, Ratcliffe PJ: Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J 2001;20:5197–5206.
105.
Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, et al: C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation [see comments]. Cell 2001;107:43–54.
106.
Bruick RK, McKnight SL: A conserved family of prolyl-4-hydroxylases that modify HIF. Science 2001;294:1337–1340.
107.
Huang J, Zhao Q, Mooney SM, Lee FS: Sequence determinants in hypoxia-inducible factor-1alpha for hydroxylation by the prolyl hydroxylases PHD1, PHD2, and PHD3. J Biol Chem 2002;277:39792–39800.
108.
D’Angelo G, Duplan E, Boyer N, Vigne P, Frelin C: Hypoxia up-regulates prolyl hydroxylase activity: A feedback mechanism that limits HIF-1 responses during reoxygenation. J Biol Chem 2003;278:38183–38187.
109.
Pugh C, O’Rourke J, Nagao M, Gleadle J, Ratcliffe P: Activation of hypoxia-inducible factor-1: Definition of regulatory domains within the alpha subunit. J Biol Chem 1997;272:11205–11214.
110.
Kallio PJ, Okamoto K, O’Brien S, Carrero P, Makino Y, Tanaka H, Poellinger L: Signal transduction in hypoxic cells: Inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha. EMBO J 1998;17:6573–6586.
111.
Carrero P, Okamoto K, Coumailleau P, O’Brien S, Tanaka H, Poellinger L: Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1alpha. Mol Cell Biol 2000;20:402–415.
112.
Arany Z, Huang LE, Eckner R, Bhattacharya S, Jiang C, Goldberg MA, Bunn HF, Livingston DM: An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci USA 1996;93:12969–12973.
113.
Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML: Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 2002;295:858–861.
114.
Jiang BH, Zheng JZ, Leung SW, Roe R, Semenza GL: Transactivation and inhibitory domains of hypoxia-inducible factor 1α. J Biol Chem 1997;272:19253–19260.
115.
Luo JC, Shibuya M: A variant of nuclear localization signal of bipartite-type is required for the nuclear translocation of hypoxia inducible factors (1alpha, 2alpha and 3alpha). Oncogene 2001;20:1435–1444.
116.
Ikuta T, Eguchi H, Tachibana T, Yoneda Y, Kawajiri K: Nuclear localization and export signals of the human aryl hydrocarbon receptor. J Biol Chem 1998;273:2895–2904.
117.
Elvert G, Kappel A, Heidenreich R, Englmeier U, Lanz S, Acker T, Rauter M, Plate K, Sieweke M, Breier G, et al: Cooperative interaction of hypoxia-inducible factor-2alpha (HIF-2alpha ) and Ets-1 in the transcriptional activation of vascular endothelial growth factor receptor-2 (Flk-1). J Biol Chem 2003;278:7520–7530.
118.
Schnell PO, Ignacak ML, Bauer AL, Striet JB, Paulding WR, Czyzyk-Krzeska MF: Regulation of tyrosine hydroxylase promoter activity by the von Hippel-Lindau tumor suppressor protein and hypoxia-inducible transcription factors. J Neurochem 2003;85:483–491.
119.
Makino Y, Cao R, Svensson K, Bertilsson G, Asman M, Tanaka H, Cao Y, Berkenstam A, Poellinger L: Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 2001;414:550–554.
120.
Turner KJ, Moore JW, Jones A, Taylor CF, Cuthbert-Heavens D, Han C, Leek RD, Gatter KC, Maxwell PH, Ratcliffe PJ, et al: Expression of hypoxia-inducible factors in human renal cancer: Relationship to angiogenesis and to the von Hippel-Lindau gene mutation. Cancer Res 2002;62:2957–2961.
121.
Maxwell P, Weisner M, Chang GW, Clifford S, Vaux E, Pugh C, Maher E, Ratcliffe P: The von Hippel-Lindau gene product is necessary for oxgyen-dependent proteolysis of hypoxia-inducible factor α subunits. Nature 1999;399:271–275.
122.
Brugarolas JB, Vazquez F, Reddy A, Sellers WR, Kaelin WG Jr: TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 2003;4:147–158.
123.
Nguyen-Vu PA, Fackler I, Rust A, DeClue JE, Sander CA, Volkenandt M, Flaig M, Yeung RS, Wienecke R: Loss of tuberin, the tuberous-sclerosis-complex-2 gene product is associated with angiogenesis. J Cutan Pathol 2001;28:470–475.
124.
de Paulsen N, Brychzy A, Fournier MC, Klausner RD, Gnarra JR, Pause A, Lee S: Role of transforming growth factor-alpha in von Hippel-Lindau (VHL)(–/–) clear cell renal carcinoma cell proliferation: A possible mechanism coupling VHL tumor suppressor inactivation and tumorigenesis. Proc Natl Acad Sci USA 2001;98:1387–1392.
125.
Knebelmann B, Ananth S, Cohen H, Sukhatme V: Transforming growth factor alpha is a target for the von Hippel-Lindau tumor suppressor. Cancer Res 1998;58:226–231.
126.
Humes H, Beals T, Cieslinski D, Sanchez I, Page T: Effects of transforming growth factor-beta, transforming growth factor-alpha, and other growth factors on renal proximal tubule cells. Lab Invest 1991;64:538–545.
127.
Maranchie JK, Vasselli JR, Riss J, Bonifacino JS, Linehan WM, Klausner RD: The contribution of VHL substrate binding and HIF1-T to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell 2002;1:247–255.
128.
Kondo K, Klco J, Nakamura E, Lechpammer M, Kaelin WG Jr: Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 2002;1:237–246.
129.
Okuda H, Hirai S, Takaki Y, Kamada M, Baba M, Sakai N, Kishida T, Kaneko S, Yao M, Ohno S, et al: Direct interaction of the beta-domain of VHL tumor suppressor protein with the regulatory domain of atypical PKC isotypes. Biochem Biophys Res Commun 1999;263:491–497.
130.
Li Z, Na X, Wang D, Schoen SR, Messing EM, Wu G: Ubiquitination of a novel deubiquitinating enzyme requires direct binding to von Hippel-Lindau tumor suppressor protein. J Biol Chem 2002;277:4656–4662.
131.
Kuznetsova AV, Meller J, Schnell PO, Nash JA, Ignacak ML, Sanchez Y, Conaway JW, Conaway RC, Czyzyk-Krzeska MF: Von Hippel-Lindau protein binds hyperphosphorylated large subunit of RNA polymerase II through a proline hydroxylation motif and targets it for ubiquitination. Proc Natl Acad Sci USA 2003;100:2706–2711.
132.
Na X, Duan HO, Messing EW, Schoen SR, Ryan CK, di Sant’Agnese PA, Golemis EA, Wu G: Identification of the RNA polymerase II subunit hsRPB7 as a novel target of the von Hippel-Lindau protein. EMBO J 2003;22:4249–4259.
133.
Hynes R: Integrins: Versatility, modulation, and signalling in cell adhesion. Cell 1992;69:11–25.
134.
Hoffman MA, Ohh M, Yang H, Klco JM, Ivan M, Kaelin WG Jr: Von Hippel-Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. Hum Mol Genet 2001;10:1019–1027.
135.
Lieubeau-Teillet B, Rak J, Jothy S, Iliopoulos O, Kaelin W, Kerbel R: Von Hippel-Lindau gene-mediated growth suppression and induction of differentiation in renal cell carcinoma cells grown as multicellular tumor spheroids. Cancer Res 1998;58:4957–4962.
136.
Koochekpour S, Jeffers M, Wang P, Gong C, Taylor G, Roessler L, Stearman R, Vasselli J, Stetler-Stevenson W, Kaelin W Jr, et al: The von Hippel-Lindau tumor suppressor gene inhibits hepatocyte growth factor/scatter factor-induced invasion and branching morphogenesis in renal carcinoma cells. Mol Cell Biol 1999;19:5902–5912.
137.
Cohen H, Zhou M, Welsh A, Zarghamee S, Scholz H, Mukhopadhyay D, Kishida T, Zbar B, Knebelmann B, Sukhatme V: An important von Hippel-Lindau tumor suppressor domain mediates Sp1-binding and self-association. Biochem Biophys Res Commun 1999;266:43–50.
138.
Rafty LA, Khachigian LM: Von Hippel-Lindau tumor suppressor protein represses platelet-derived growth factor B-chain gene expression via the Sp1 binding element in the proximal PDGF-B promoter. J Cell Biochem 2002;85:490–495.
139.
Li Z, Wang D, Na X, Schoen SR, Messing EM, Wu G: The VHL protein recruits a novel KRAB-A domain protein to repress HIF-1alpha transcriptional activity. EMBO J 2003;22:1857–1867.
140.
Kim SS, Chen YM, O’Leary E, Witzgall R, Vidal M, Bonventre JV: A novel member of the RING finger family, KRIP-1, associates with the KRAB-A transcriptional repressor domain of zinc finger proteins. Proc Natl Acad Sci USA 1996;93:15299–15304.
141.
Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, Huang XP, Neilson EG, Rauscher F Jr: KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev 1996;10:2067–2078.
142.
Moosmann P, Georgiev O, Le Douarin B, Bourquin JP, Schaffner W: Transcriptional repression by RING finger protein TIF1 beta that interacts with the KRAB repressor domain of KOX1. Nucleic Acids Res 1996;24:4859–4867.
143.
Underhill C, Qutob MS, Yee SP, Torchia J: A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1. J Biol Chem 2000;275:40463–40470.
144.
Lechner MS, Begg GE, Speicher DW, Rauscher FJ 3rd: Molecular determinants for targeting heterochromatin protein 1-mediated gene silencing: Direct chromoshadow domain-KAP-1 corepressor interaction is essential. Mol Cell Biol 2000;20:6449–6465.
145.
van den Berg A, Dijkhuizen T, Draaijers TG, Hulsbeek MM, Maher ER, van den Berg E, Storkel S, Buys CH: Analysis of multiple renal cell adenomas and carcinomas suggests allelic loss at 3p21 to be a prerequisite for malignant development. Genes Chromosomes Cancer 1997;19:228–232.
146.
Semenza GL: HIF-1: Mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 2000;88:1474–1480.
147.
Maxwell PH, Pugh CW, Ratcliffe PJ: Activation of the HIF pathway in cancer. Curr Opin Genet Dev 2001;11:293–299.
148.
Zatyka M, da Silva NF, Clifford SC, Morris MR, Wiesener MS, Eckardt KU, Houlston RS, Richards FM, Latif F, Maher ER: Identification of cyclin D1 and other novel targets for the von Hippel-Lindau tumor suppressor gene by expression array analysis and investigation of cyclin D1 genotype as a modifier in von Hippel-Lindau disease. Cancer Res 2002;62:3803–3811.
149.
Pause A, Lee S, Lonergan KM, Klausner RD: The von Hippel-Lindau tumor suppressor gene is required for cell cycle exit upon serum withdrawal. Proc Natl Acad Sci USA 1998;95:993–998.
150.
Kim M, Katayose Y, Li Q, Rakkar A, Li Z, Hwang S, Katayose D, Trepel J, Cowan K, Seth P: Recombinant adenovirus expressing von Hippel-Lindau-mediated cell cycle arrest is associated with the induction of cyclin-dependent kinase inhibitor p27Kip1. Biochem Biophys Res Commun 1998;253:672–677.
151.
Bindra RS, Vasselli JR, Stearman R, Linehan WM, Klausner RD: VHL-mediated hypoxia regulation of cyclin D1 in renal carcinoma cells. Cancer Res 2002;62:3014–3019.
152.
Hergovich A, Lisztwan J, Barry R, Ballschmieter P, Krek W: Regulation of microtubule stability by the von Hippel-Lindau tumour suppressor protein pVHL. Nat Cell Biol 2003;5:64–70.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.