Introduction: Many reports indicate that the occurrence of multiple myeloma (MM) is closely related to inflammation and immunity. Although the survival rates have been gradually improving in recent years, the cure rate is still not optimistic enough. Therefore, it is necessary to continue exploring the causes of MM. Methods: This study utilizes Mendelian randomization (MR) analysis to establish the connection between inflammatory factors, immune cells, and the occurrence of MM. Results: In MR studies, a significant correlation was observed between interleukin-1 receptor antagonist (IL-1Ra), tumor necrosis factor receptor 1 (TNFR1), memory B-cell percentage of B cells (memory B-cell %B cells), and immunoglobulin D-positive, CD24-negative percentage B cells (IgD+ CD24− %B cells) with the onset of MM. In particular, IgD+ CD24− %B cells showed a statistically significant inverse relationship with the development of MM (p < 0.05, OR <1), whereas IL-1Ra, TNFR1, and memory B-cell %B cells displayed a positive association with the onset of MM (p < 0.05, OR >1). These findings contribute valuable insights to the understanding of the pathogenesis of MM. Conclusion: This study emphasizes the significant role of inflammatory factors and immune cells in multiple myeloma (MM) progression. IL-1Ra, TNFR1, and memory B-cell percentages are identified as risk factors, while IgD+ CD24− %B cells may protect against progression, suggesting new immunomodulatory treatment strategies. However, research on IgD+ CD24− %B cells and MM is limited, necessitating future studies to clarify their mechanisms and effects on the tumor microenvironment. There is also an urgent need for clinical trials to assess therapies targeting these cells, as well as long-term follow-ups to understand their dynamic changes in relation to disease progression. Further investigation using animal models is warranted to validate their functional role in MM development.

1.
Rajkumar
SV
.
Multiple myeloma: 2020 update on diagnosis, risk-stratification and management
.
Am J Hematol
.
2020
;
95
(
5
):
548
67
.
2.
Xiong
S
,
Dong
L
,
Cheng
L
.
Neutrophils in cancer carcinogenesis and metastasis
.
J Hematol Oncol
.
2021
;
14
(
1
):
173
.
3.
Zheng
C
,
Huang
DR
,
Bergenbrant
S
,
Sundblad
A
,
Osterborg
A
,
Björkholm
M
, et al
.
Interleukin 6, tumour necrosis factor alpha, interleukin 1beta and interleukin 1 receptor antagonist promoter or coding gene polymorphisms in multiple myeloma
.
Br J Haematol
.
2000
;
109
(
1
):
39
45
.
4.
Boussi
LS
,
Avigan
ZM
,
Rosenblatt
J
.
Immunotherapy for the treatment of multiple myeloma
.
Front Immunol
.
2022
;
13
:
1027385
.
5.
Mikulski
D
,
Robak
P
,
Perdas
E
,
Węgłowska
E
,
Łosiewicz
A
,
Dróżdż
I
, et al
.
Pretreatment serum levels of IL-1 receptor antagonist and IL-4 are predictors of overall survival in multiple myeloma patients treated with bortezomib
.
J Clin Med
.
2021
;
11
(
1
):
112
.
6.
Alexander
DD
,
Mink
PJ
,
Adami
H-O
,
Cole
P
,
Mandel
JS
,
Oken
MM
, et al
.
Multiple myeloma: a review of the epidemiologic literature
.
Int J Cancer
.
2007
;
120
(
Suppl 12
):
40
61
.
7.
Nair
S
,
Branagan
AR
,
Liu
J
,
Boddupalli
CS
,
Mistry
PK
,
Dhodapkar
MV
.
Clonal immunoglobulin against lysolipids in the origin of myeloma
.
N Engl J Med
.
2016
;
374
(
6
):
555
61
.
8.
Spinello
A
,
Vecile
E
,
Abbate
A
,
Dobrina
A
,
Magistrato
A
.
How can IL-1Ra modulate distinct cell death pathways
.
J Chem Inf Model
.
2019
;
59
(
1
):
351
9
.
9.
Rodriguez
AB
,
Parriott
G
,
Engelhard
VH
.
Tumor necrosis factor receptor regulation of peripheral node addressin biosynthetic components in tumor endothelial cells
.
Front Immunol
.
2022
;
13
:
1009306
.
10.
Verhoeven
D
,
Grinwis
L
,
Marsman
C
,
Jansen
MH
;
T2B Consortium
;
Van Leeuwen
EM
, et al
.
B-cell targeting with anti-CD38 daratumumab: implications for differentiation and memory responses
.
Life Sci Alliance
.
2023
;
6
(
9
):
e202302214
.
11.
Rajkumar
SV
,
Kumar
S
.
Multiple myeloma current treatment algorithms
.
Blood Cancer J
.
2020
;
10
(
9
):
94
.
12.
Dimopoulos
MA
,
Terpos
E
,
Boccadoro
M
,
Delimpasi
S
,
Beksac
M
,
Katodritou
E
, et al
.
Daratumumab plus pomalidomide and dexamethasone versus pomalidomide and dexamethasone alone in previously treated multiple myeloma (APOLLO): an open-label, randomised, phase 3 trial
.
Lancet Oncol
.
2021
;
22
(
6
):
801
12
.
13.
Moreau
P
,
Attal
M
,
Hulin
C
,
Arnulf
B
,
Belhadj
K
,
Benboubker
L
, et al
.
Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): a randomised, open-label, phase 3 study
.
Lancet
.
2019
;
394
(
10192
):
29
38
.
14.
Emdin
CA
,
Khera
AV
,
Kathiresan
S
.
Mendelian randomization
.
JAMA
.
2017
;
318
(
19
):
1925
6
.
15.
Hu
M-J
,
Tan
J-S
,
Gao
X-J
,
Yang
J-G
,
Yang
Y-J
.
Effect of cheese intake on cardiovascular diseases and cardiovascular biomarkers
.
Nutrients
.
2022
;
14
(
14
):
2936
.
16.
Burgess
S
,
Bowden
J
,
Fall
T
,
Ingelsson
E
,
Thompson
SG
.
Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants
.
Epidemiology
.
2017
;
28
(
1
):
30
42
.
17.
Chen
M-H
,
Raffield
LM
,
Mousas
A
,
Sakaue
S
,
Huffman
JE
,
Moscati
A
, et al
.
Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations
.
Cell
.
2020
;
182
(
5
):
1198
213.e14
.
18.
Folkersen
L
,
Gustafsson
S
,
Wang
Q
,
Hansen
DH
,
Hedman
ÅK
,
Schork
A
, et al
.
Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals
.
Nat Metab
.
2020
;
2
(
10
):
1135
48
.
19.
Vuckovic
D
,
Bao
EL
,
Akbari
P
,
Lareau
CA
,
Mousas
A
,
Jiang
T
, et al
.
The polygenic and monogenic basis of blood traits and diseases
.
Cell
.
2020
;
182
(
5
):
1214
31.e11
.
20.
Said
S
,
Pazoki
R
,
Karhunen
V
,
Võsa
U
,
Ligthart
S
,
Bodinier
B
, et al
.
Author Correction: genetic analysis of over half a million people characterises C-reactive protein loci
.
Nat Commun
.
2022
;
13
(
1
):
3865
.
21.
Loh
P-R
,
Kichaev
G
,
Gazal
S
,
Schoech
AP
,
Price
AL
.
Mixed-model association for biobank-scale datasets
.
Nat Genet
.
2018
;
50
(
7
):
906
8
.
22.
Ahola-Olli
AV
,
Würtz
P
,
Havulinna
AS
,
Aalto
K
,
Pitkänen
N
,
Lehtimäki
T
, et al
.
Genome-wide association study identifies 27 loci influencing concentrations of circulating cytokines and growth factors
.
Am J Hum Genet
.
2017
;
100
(
1
):
40
50
.
23.
Sun
BB
,
Maranville
JC
,
Peters
JE
,
Stacey
D
,
Staley
JR
,
Blackshaw
J
, et al
.
Genomic atlas of the human plasma proteome
.
Nature
.
2018
;
558
(
7708
):
73
9
.
24.
Orrù
V
,
Steri
M
,
Sidore
C
,
Marongiu
M
,
Serra
V
,
Olla
S
, et al
.
Complex genetic signatures in immune cells underlie autoimmunity and inform therapy
.
Nat Genet
.
2020
;
52
(
10
):
1036
45
.
25.
Machiela
MJ
,
Chanock
SJ
.
LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants
.
Bioinformatics
.
2015
;
31
(
21
):
3555
7
.
26.
Burgess
S
,
Bowden
J
,
Fall
T
,
Ingelsson
E
,
Thompson
SG
.
Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants
.
Epidemiology
.
2017
;
28
(
1
):
30
42
.
27.
Bowden
J
,
Davey Smith
G
,
Burgess
S
.
Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression
.
Int J Epidemiol
.
2015
;
44
(
2
):
512
25
.
28.
Rider
P
,
Carmi
Y
,
Cohen
I
.
Biologics for targeting inflammatory cytokines, clinical uses, and limitations
.
Int J Cell Biol
.
2016
;
2016
:
9259646
.
29.
Mantovani
A
,
Barajon
I
,
Garlanda
C
.
IL-1 and IL-1 regulatory pathways in cancer progression and therapy
.
Immunol Rev
.
2018
;
281
(
1
):
57
61
.
30.
Boersma
B
,
Jiskoot
W
,
Lowe
P
,
Bourquin
C
.
The interleukin-1 cytokine family members: role in cancer pathogenesis and potential therapeutic applications in cancer immunotherapy
.
Cytokine Growth Factor Rev
.
2021
;
62
:
1
14
.
31.
Bosseboeuf
A
,
Allain-Maillet
S
,
Mennesson
N
,
Tallet
A
,
Rossi
C
,
Garderet
L
, et al
.
Pro-inflammatory state in monoclonal gammopathy of undetermined significance and in multiple myeloma is characterized by low sialylation of pathogen-specific and other monoclonal immunoglobulins
.
Front Immunol
.
2017
;
8
:
1347
.
32.
Wajant
H
,
Scheurich
P
.
TNFR1-induced activation of the classical NF-κB pathway
.
FEBS J
.
2011
;
278
(
6
):
862
76
.
33.
Hideshima
T
,
Chauhan
D
,
Schlossman
R
,
Richardson
P
,
Anderson
KC
.
The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications
.
Oncogene
.
2001
;
20
(
33
):
4519
27
.
34.
Klein
B
,
Tarte
K
,
Jourdan
M
,
Mathouk
K
,
Moreaux
J
,
Jourdan
E
, et al
.
Survival and proliferation factors of normal and malignant plasma cells
.
Int J Hematol
.
2003
;
78
(
2
):
106
13
.
35.
Rauert
H
,
Stühmer
T
,
Bargou
R
,
Wajant
H
,
Siegmund
D
.
TNFR1 and TNFR2 regulate the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms
.
Cell Death Dis
.
2011
;
2
(
8
):
e194
.
36.
Hayden
MS
,
Ghosh
S
.
Shared principles in NF-kappaB signaling
.
Cell
.
2008
;
132
(
3
):
344
62
.
37.
Scheidereit
C
.
IkappaB kinase complexes: gateways to NF-kappaB activation and transcription
.
Oncogene
.
2006
;
25
(
51
):
6685
705
.
38.
Wajant
H
,
Scheurich
P
.
TNFR1-induced activation of the classical NF-κB pathway
.
FEBS J
.
2011
;
278
(
6
):
862
76
.
39.
Keats
JJ
,
Fonseca
R
,
Chesi
M
,
Schop
R
,
Baker
A
,
Chng
WJ
, et al
.
Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma
.
Cancer Cell
.
2007
;
12
(
2
):
131
44
.
40.
Cippitelli
M
,
Stabile
H
,
Kosta
A
,
Petillo
S
,
Lucantonio
L
,
Gismondi
A
, et al
.
Role of NF-κB signaling in the interplay between multiple myeloma and mesenchymal stromal cells
.
Int J Mol Sci
.
2023
;
24
(
3
):
1823
.
41.
Staudt
LM
.
Oncogenic activation of NF-kappaB
.
Cold Spring Harb Perspect Biol
.
2010
;
2
(
6
):
a000109
.
42.
Muller
J
,
Baeyens
A
,
Dustin
ML
.
Tumor necrosis factor receptor superfamily in T cell priming and effector function
.
Adv Immunol
.
2018
;
140
:
21
57
.
43.
Wertz
IE
,
Dixit
VM
.
Signaling to NF-kappaB: regulation by ubiquitination
.
Cold Spring Harb Perspect Biol
.
2010
;
2
(
3
):
a003350
.
44.
Perkins
ND
.
The diverse and complex roles of NF-κB subunits in cancer
.
Nat Rev Cancer
.
2012
;
12
(
2
):
121
32
.
45.
Verhoeven
D
,
Grinwis
L
,
Marsman
C
,
Jansen
MH
;
T2B Consortium
;
Van Leeuwen
EM
, et al
.
B-cell targeting with anti-CD38 daratumumab: implications for differentiation and memory responses
.
Life Sci Alliance
.
2023
;
6
(
9
):
e202302214
.
46.
Qian
Y
,
Chen
C
,
Ma
L
,
Wang
Z
,
Wang
LF
,
Zuo
L
, et al
.
CD38 deficiency promotes inflammatory response through activating Sirt1/NF-κB-Mediated inhibition of TLR2 expression in macrophages
.
Mediators Inflamm
.
2018
;
2018
:
8736949
.
47.
Wang
X
,
Liu
M
,
Zhang
J
,
Brown
NK
,
Zhang
P
,
Zhang
Y
, et al
.
CD24-Siglec axis is an innate immune checkpoint against metaflammation and metabolic disorder
.
Cell Metab
.
2022
;
34
(
8
):
1088
103.e6
.
48.
Barkal
AA
,
Brewer
RE
,
Markovic
M
,
Kowarsky
M
,
Barkal
SA
,
Zaro
BW
, et al
.
CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy
.
Nature
.
2019
;
572
(
7769
):
392
6
.
49.
Chen
GY
,
Tang
J
,
Zheng
P
,
Liu
Y
.
CD24 and Siglec-10 selectively repress tissue damage-induced immune responses
.
Science
.
2009
;
323
(
5922
):
1722
5
.
50.
Sun
F
,
Cheng
Y
,
Wanchai
V
,
Guo
W
,
Mery
D
,
Xu
H
, et al
.
Bispecific BCMA/CD24 CAR-T cells control multiple myeloma growth
.
Nat Commun
.
2024
;
15
(
1
):
615
.
You do not currently have access to this content.