We have been studying hematopoietic effects by the tachykinins, which like many other neuropeptides can be expressed in neural and nonneural tissues. Substance P (SP) and neurokinin-A (NK-A), members of the tachykinins are immune and hematopoietic modulators. SP and NK-A are derived from the preprotachykinin-I gene (PPT-I) through alternate splicing and posttranslational modification. In the bone marrow (BM), nerve fibers provide a source of neural SP and the stroma provides a source of nonneural SP. The tachykinins interact with each of three cloned neurokinin (NK) receptors (NK-1R, NK-2R, NK-3R) with SP and NK-A exhibiting binding preferences for NK-1R and NK-2R, respectively. Proliferation of myeloid progenitors (CFU-GM) is differentially regulated by SP and NK-A. The former enhances the proliferation whereas the latter is inhibitory. The BM stroma mediates most of the hematopoietic effects exerted by SP and NK-A partly through the induction of cytokines. The proliferative effects of SP correlate with the induction of positive hematopoietic growth factors such as IL-3, IL-6, GM-CSF and c-kit ligand and the inhibitory effects by NK-A correlate with the induction of two negative hematopoietic regulators, MlP-lα and TGF-β. Intracellular signals mediated by NK-1R and NK-2R are part of the mechanism responsible for tachykinin-mediated regulation of hematopoiesis. The stimulatory effects on BM progenitors mediated by NK-1R can be partly inhibited by NK-2R activation. IL-1 and other cytokines induced by SP in BM stroma modulate NK-1R induction. Furthermore, SP can induce IL-1 type I receptor in stroma. Together, these data suggest that the tachykinins and the cytokines interact to regulate hematopoiesis. These interactions contribute to hematopoietic regulation by mechanisms that involve induction of: (1) tachykinins and cytokines by each other; (2) NK-1R by cytokines and (3) cytokine receptor by the tachykinins. These studies emphasize that in terms of hematopoiesis, the cytokines and neuropeptides are not mutually exclusive factors and thus, the hematopoietic regulatory network would be incomplete without the role of neuropeptides being considered.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.