Introduction: Prediction of outcomes following allogeneic hematopoietic cell transplantation (HCT) remains a major challenge. Machine learning (ML) is a computational procedure that may facilitate the generation of HCT prediction models. We sought to investigate the prognostic potential of multiple ML algorithms when applied to a large single-center allogeneic HCT database. Methods: Our registry included 2,697 patients that underwent allogeneic HCT from January 1976 to December 2017. 45 pretransplant baseline variables were included in the predictive assessment of each ML algorithm on overall survival (OS) as determined by area under the curve (AUC). Pretransplant variables used in the EBMT ML study (Shouval et al., 2015) were used as a benchmark for comparison. Results: On the entire dataset, the random forest (RF) algorithm performed best (AUC 0.71 ± 0.04) compared to the second-best model, logistic regression (LR) (AUC = 0.69 ± 0.04) (p < 0.001). Both algorithms demonstrated improved AUC scores using all 45 variables compared to the limited variables examined by the EBMT study. Survival at 100 days post-HCT using RF on the full dataset discriminated patients into different prognostic groups with different 2-year OS (p < 0.0001). We then examined the ML methods that allow for significant individual variable identification, including LR and RF, and identified matched related donors (HR = 0.49, p < 0.0001), increasing TBI dose (HR = 1.60, p = 0.006), increasing recipient age (HR = 1.92, p < 0.0001), higher baseline Hb (HR = 0.59, p = 0.0002), and increased baseline FEV1 (HR = 0.73, p = 0.02), among others. Conclusion: The application of multiple ML techniques on single-center allogeneic HCT databases warrants further investigation and may provide a useful tool to identify variables with prognostic potential.

1.
Styczyński
J
,
Tridello
G
,
Koster
L
,
Iacobelli
S
,
van Biezen
A
,
van der Werf
S
et al
.
Death after hematopoietic stem cell transplantation: changes over calendar year time, infections and associated factors
.
Bone Marrow Transplant
.
2020
;
55
(
1
):
126
36
.
2.
Wingard
JR
,
Majhail
NS
,
Brazauskas
R
,
Wang
Z
,
Sobocinski
KA
,
Jacobsohn
D
et al
.
Long-term survival and late deaths after allogeneic hematopoietic cell transplantation
.
J Clin Oncol
.
2011
;
29
(
16
):
2230
9
.
3.
Bacigalupo
A
,
Sormani
MP
,
Lamparelli
T
,
Gualandi
F
,
Occhini
D
,
Bregante
S
et al
.
Reducing transplant-related mortality after allogeneic hematopoietic stem cell transplantation
.
Haematologica
.
2004
;
89
(
10
):
1238
47
.
4.
Gratwohl
A
,
Stern
M
,
Brand
R
,
Apperley
J
,
Baldomero
H
,
de Witte
T
et al
.
Risk score for outcome after allogeneic hematopoietic stem cell transplantation: a retrospective analysis
.
Cancer
.
2009
;
115
(
20
):
4715
26
.
5.
Sorror
ML
,
Maris
MB
,
Storb
R
,
Baron
F
,
Sandmaier
BM
,
Maloney
DG
et al
.
Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT
.
Blood
.
2005
;
106
(
8
):
2912
9
.
6.
Vaughn
JE
,
Storer
BE
,
Armand
P
,
Raimondi
R
,
Gibson
C
,
Rambaldi
A
et al
.
Design and validation of an augmented hematopoietic cell transplantation-comorbidity index comprising pretransplant ferritin, albumin, and platelet count for prediction of outcomes after allogeneic transplantation
.
Biol Blood Marrow Transplant
.
2015
;
21
(
8
):
1418
24
.
7.
Sorror
ML
,
Storb
RF
,
Sandmaier
BM
,
Maziarz
RT
,
Pulsipher
MA
,
Maris
MB
et al
.
Comorbidity-age index: a clinical measure of biologic age before allogeneic hematopoietic cell transplantation
.
J Clin Oncol
.
2014
;
32
(
29
):
3249
56
.
8.
Sorror
ML
,
Logan
BR
,
Zhu
X
,
Rizzo
JD
,
Cooke
KR
,
McCarthy
PL
et al
.
Prospective validation of the predictive power of the hematopoietic cell transplantation comorbidity index: a Center for International Blood and Marrow Transplant Research Study
.
Biol Blood Marrow Transplant
.
2015
;
21
(
8
):
1479
87
.
9.
Wang
HT
,
Chang
YJ
,
Xu
LP
,
Liu
DH
,
Wang
Y
,
Liu
KY
et al
.
EBMT risk score can predict the outcome of leukaemia after unmanipulated haploidentical blood and marrow transplantation
.
Bone Marrow Transplant
.
2014
;
49
(
7
):
927
33
.
10.
Versluis
J
,
Labopin
M
,
Niederwieser
D
,
Socie
G
,
Schlenk
RF
,
Milpied
N
et al
.
Prediction of non-relapse mortality in recipients of reduced intensity conditioning allogeneic stem cell transplantation with AML in first complete remission
.
Leukemia
.
2015
;
29
(
1
):
51
7
.
11.
Nakaya
A
,
Mori
T
,
Tanaka
M
,
Tomita
N
,
Nakaseko
C
,
Yano
S
et al
.
Does the hematopoietic cell transplantation specific comorbidity index (HCT-CI) predict transplantation outcomes? A prospective multicenter validation study of the Kanto Study Group for Cell Therapy
.
Biol Blood Marrow Transplant
.
2014
;
20
(
10
):
1553
9
.
12.
Deo
RC
.
Machine learning in medicine
.
Circulation
.
2015
;
132
(
20
):
1920
30
.
13.
Taati
B
,
Snoek
J
,
Aleman
D
,
Ghavamzadeh
A
.
Data mining in bone marrow transplant records to identify patients with high odds of survival
.
IEEE J Biomed Health Inform
.
2014
;
18
(
1
):
21
7
.
14.
Koyuncugil
AS
,
Ozgulbas
N
.
Donor research and matching system based on data mining in organ transplantation
.
J Med Syst
.
2010
;
34
(
3
):
251
9
.
15.
Shouval
R
,
Labopin
M
,
Bondi
O
,
Mishan-Shamay
H
,
Shimoni
A
,
Ciceri
F
et al
.
Prediction of allogeneic hematopoietic stem-cell transplantation mortality 100 days after transplantation using a machine learning algorithm: a European Group for Blood and Marrow Transplantation Acute Leukemia Working Party retrospective data mining study
.
J Clin Oncol
.
2015
;
33
(
28
):
3144
51
.
16.
Gupta
V
,
Braun
TM
,
Chowdhury
M
,
Tewari
M
,
Choi
SW
.
A systematic review of machine learning techniques in hematopoietic stem cell transplantation (HSCT)
.
Sensors
.
2020
;
20
(
21
):
6100
.
17.
Luft
T
,
Benner
A
,
Terzer
T
,
Jodele
S
,
Dandoy
CE
,
Storb
R
et al
.
EASIX and mortality after allogeneic stem cell transplantation
.
Bone Marrow Transplant
.
2020 Mar
55
3
553
61
.
18.
Mrózek
K
,
Harper
DP
,
Aplan
PD
.
Cytogenetics and molecular genetics of acute lymphoblastic leukemia
.
Hematol Oncol Clin North Am
.
2009
;
23
(
5
):
991
1010
.
19.
Baliakas
P
,
Jeromin
S
,
Iskas
M
,
Puiggros
A
,
Plevova
K
,
Nguyen-Khac
F
et al
.
Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations, and clinical impact
.
Blood
.
2019
;
133
(
11
):
1205
16
.
20.
Campbell
LJ
.
Cancer cytogenetics: methods and protocols
.
Methods Mol Biol
.
2011
;
730
:
1
2
.
21.
Patnaik
MM
,
Tefferi
A
.
Cytogenetic and molecular abnormalities in chronic myelomonocytic leukemia
.
Blood Cancer J
.
2016
;
6
(
2
):
e393
.
22.
Tefferi
A
,
Nicolosi
M
,
Mudireddy
M
,
Lasho
TL
,
Gangat
N
,
Begna
KH
et al
.
Revised cytogenetic risk stratification in primary myelofibrosis: analysis based on 1002 informative patients
.
Leukemia
.
2018
;
32
(
5
):
1189
99
.
23.
Rajan
AM
,
Rajkumar
SV
.
Interpretation of cytogenetic results in multiple myeloma for clinical practice
.
Blood Cancer J
.
2015
;
5
(
10
):
e365
.
24.
Kluin
P
,
Schuuring
E
.
Molecular cytogenetics of lymphoma: where do we stand in 2010
.
Histopathology
.
2011
;
58
(
1
):
128
44
.
25.
Deeg
HJ
,
Scott
BL
,
Fang
M
,
Shulman
HM
,
Gyurkocza
B
,
Myerson
D
et al
.
Five-group cytogenetic risk classification, monosomal karyotype, and outcome after hematopoietic cell transplantation for MDS or acute leukemia evolving from MDS
.
Blood
.
2012
;
120
(
7
):
1398
408
.
26.
Moons
KG
,
Altman
DG
,
Reitsma
JB
,
Ioannidis
JPA
,
Macaskill
P
,
Steyerberg
EW
et al
.
Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration
.
Ann Intern Med
.
2015
162
1
W1
73
.
27.
Chao
CM
,
Yu
YW
,
Cheng
BW
,
Kuo
YL
.
Construction the model on the breast cancer survival analysis use support vector machine, logistic regression and decision tree
.
J Med Syst
.
2014
;
38
(
10
):
106
7
.
28.
Kotsiantis
SB
,
Zaharakis
I
,
Pintelas
P
et al
.
Supervised machine learning: a review of classification techniques
.
Emerging Artif intelligence Appl Comput Eng
.
2007
;
160
:
3
24
.
29.
Khalilia
M
,
Chakraborty
S
,
Popescu
M
.
Predicting disease risks from highly imbalanced data using random forest
.
BMC Med Inform Decis Mak
.
2011
;
11
:
51
.
30.
Chen
T
,
He
T
,
Benesty
M
et al
.
Xgboost: extreme gradient boosting
.
R Package Version 0.4-2
.
2015
;
1
:
1
4
.
31.
Bouckaert
RR
,
Frank
E
.
Evaluating the replicability of significance tests for comparing learning algorithms
.
Pacific-asia conference on knowledge discovery and data mining
.
Springer
.
2004
. p.
3
12
.
32.
Gratwohl
A
.
The EBMT risk score
.
Bone Marrow Transplant
.
2012
;
47
(
6
):
749
56
.
33.
Chee
L
,
Tacey
M
,
Lim
B
,
Lim
A
,
Szer
J
,
Ritchie
D
.
Pre-transplant ferritin, albumin and haemoglobin are predictive of survival outcome independent of disease risk index following allogeneic stem cell transplantation
.
Bone Marrow Transplant
.
2017
;
52
(
6
):
870
7
.
34.
Hamadani
M
,
Khanal
M
,
Ahn
KW
,
Litovich
C
,
Chow
VA
,
Eghtedar
A
et al
.
Higher total body irradiation dose intensity in fludarabine/TBI-based reduced-intensity conditioning regimen is associated with inferior survival in non-Hodgkin lymphoma patients undergoing allogeneic transplantation
.
Biol Blood Marrow Transplant
.
2020
;
26
(
6
):
1099
105
.
35.
Eisenberg
L
,
Brossette
C
,
Rauch
J
,
Grandjean
A
,
Ottinger
H
et al
XplOit consortium
.
Time-dependent prediction of mortality and cytomegalovirus reactivation after allogeneic hematopoietic cell transplantation using machine learning
.
Am J Hematol
.
2022
;
97
(
10
):
1309
23
.
36.
Iwasaki
M
,
Kanda
J
,
Arai
Y
,
Kondo
T
,
Ishikawa
T
,
Ueda
Y
et al
.
Establishment of a predictive model for GVHD-free, relapse-free survival after allogeneic HSCT using ensemble learning
.
Blood Adv
.
2022
;
6
(
8
):
2618
27
.
37.
Tang
S
,
Chappell
GT
,
Mazzoli
A
,
Tewari
M
,
Choi
SW
,
Wiens
J
.
Predicting acute graft-versus-host disease using machine learning and longitudinal vital sign data from electronic health records
.
JCO Clin Cancer Inform
.
2020
;
4
:
128
35
.
38.
Arai
Y
,
Kondo
T
,
Fuse
K
,
Shibasaki
Y
,
Masuko
M
,
Sugita
J
et al
.
Using a machine learning algorithm to predict acute graft-versus-host disease following allogeneic transplantation
.
Blood Adv
.
2019
;
3
(
22
):
3626
34
.
39.
Shouval
R
,
Bondi
O
,
Mishan
H
,
Shimoni
A
,
Unger
R
,
Nagler
A
.
Application of machine learning algorithms for clinical predictive modeling: a data-mining approach in SCT
.
Bone Marrow Transplant
.
2014
;
49
(
3
):
332
7
.
You do not currently have access to this content.