The prevalence of type 2 diabetes is increasing in epidemic proportions worldwide. Evidence suggests body iron overload is frequently linked and observed in patients with type 2 diabetes. Body iron metabolism is based on iron conservation and recycling by which only a part of the daily need is replaced by duodenal absorption. The principal liver-produced peptide called hepcidin plays a fundamental role in iron metabolism. It directly binds to ferroportin, the sole iron exporter, resulting in the internalization and degradation of ferroportin. However, inappropriate production of hepcidin has been shown to play a role in the pathogenesis of type 2 diabetes mellitus and its complications, based on the regulation and expression in iron-abundant cells. Underexpression of hepcidin results in body iron overload, which triggers the production of reactive oxygen species simultaneously thought to play a major role in diabetes pathogenesis mediated both by β-cell failure and insulin resistance. Increased hepcidin expression results in increased intracellular sequestration of iron, and is associated with the complications of type 2 diabetes. Besides, hepcidin concentrations have been linked to inflammatory cytokines, matriptase 2, and chronic hepatitis C infection, which have in turn been reported to be associated with diabetes by several approaches. Either hepcidin-targeted therapy alone or as adjunctive therapy with phlebotomy, iron chelators, or dietary iron restriction may be able to alter iron parameters in diabetic patients. Therefore, measuring hepcidin may improve differential diagnosis and the monitoring of disorders of iron metabolism.

Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.