Abstract
Background/Aims: This study investigated the priming effect of sphingosine 1-phosphate (S1P) on formyl-Met-Leu-Phe-OH (fMLP)-activated neutrophils, by specific analysis of the neutrophil respiratory burst and the signaling pathway involved in S1P activity. Methods: The neutrophil respiratory burst was indirectly detected by the cytochrome c reduction method and the dihydrorhodamine 123 staining method. The signal transduction pathways of neutrophil respiratory burst primed by S1P were detected by Western blotting. Results: Our results showed that the S1P receptors (S1PRs) 1, 4 and 5 were the predominantly expressed neutrophil S1PRs at the cDNA level. After pretreatment with S1P, the fMLP-activated neutrophils released increased levels of superoxide anions. PI3K and Akt proteins were involved in the signaling pathway of the neutrophil respiratory burst primed by S1P. Conclusion: The results indicate that S1P is a new priming reagent for neutrophils and primes the respiratory burst of fMLP-activated neutrophils. S1P interacts with its receptors on neutrophils, resulting in NADPH oxidase activation by the PI3K-Akt cell signaling pathway and induction of the neutrophil respiratory burst.