Background: This study was conducted to determine the antineoplastic activities of 5-aza-2′-deoxycytidine (decitabine; DAC) and all-trans retinoic acid (ATRA), administered either alone or in combination, on in vitro cultured SHI-1 cells as well as their effects on the expression of the tumor suppressor gene p16INK4a (p16) and the retinoic acid receptor (RAR)-β. Methods: Cell growth inhibition, differentiation and apoptosis were determined in SHI-1 cells treated with DAC and/or ATRA, and the combination index of the two compounds was calculated. Methylation of the p16 and RAR-β genes in SHI-1 cells was detected by methylation-specific polymerase chain reaction (PCR). Real-time quantitative reverse transcriptase PCR was used to detect mRNA expression of the p16 and RAR-β genes, and Western blot analysis was performed for protein expression. Results: The drug combination had a synergistic effect on growth inhibition, differentiation and apoptosis of SHI-1 cells, and the effects of DAC and ATRA were dependent on time. DAC, either alone or in combination with ATRA, induced demethylation of the genes p16 and RAR-β, whereas ATRA alone had no effect on methylation. The RAR-β gene was reexpressed following DAC-ATRA combination treatment, and both agents had no effect on p16 expression. Conclusion: The results revealed that DAC used in combination with ATRA has significant clinical potential in the treatment of acute monocytic leukemia. © 2014 S. Karger AG, Basel

Issa J, Vertino PM, Boehm CD, Newsham IF, Baylin SB: Switch from monoallelic to biallelic human IGF2 promoter methylation during aging and carcinogenesis. Proc Natl Acad Sci USA 1996;93:11757-11762.
Melki JR, Clark SJ: DNA methylation changes in leukaemia. Semin Cancer Biol 2002;12:347-357.
Takai D, Gonzales FA, Tsai YC, Thayer MJ, Jones PA: Large scale mapping of methylcytosines in CTCF-binding sites in the human H19 promoter and aberrant hypomethylation in human bladder cancer. Hum Mol Genet 2001;10:2619-2626.
Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, Schoch R, Gattermann N, Sanz G, List A, Gore SD, Seymour JF, Bennett JM, Byrd J, Backstrom J, Zimmerman L, McKenzie D, Beach C, Silverman LR: Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 2009;10:223-232.
Steensma DP, Baer MR, Slack JL, Buckstein R, Godley LA, Garcia-Manero G, Albitar M, Larsen JS, Arora S, Cullen MT, Kantarjian H: Multicenter study of decitabine administered daily for 5 days every 4 weeks to adults with myelodysplastic syndromes: the alternative dosing for outpatient treatment (ADOPT) trial. J Clin Oncol 2009;27:3842-3848.
Voso MT, Santini V, Finelli C, Musto P, Pogliani E, Angelucci E, Fioritoni G, Alimena G, Maurillo L, Cortelezzi A, Buccisano F, Gobbi M, Borin L, Di Tucci A, Zini G, Petti MC, Martinelli G, Fabiani E, Fazi P, Vignetti M, Piciocchi A, Liso V, Amadori S, Leone G: Valproic acid at therapeutic plasma levels may increase 5-azacytidine efficacy in higher risk myelodysplastic syndromes. Clin Cancer Res 2009;15:5002-5007.
Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB, Sidransky D: 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1995;1:686-692.
Herman JG, Jen J, Merlo A, Baylin SB: Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B. Cancer Res 1996;56:722-727.
Cote S, Sinnett D, Momparler RL: Demethylation by 5-aza-2′-deoxycytidine of specific 5-methylcytosine sites in the promoter region of the retinoic acid receptor beta gene in human colon carcinoma cells. Anticancer Drugs 1998;9:743-750.
Breitman TR, Selonick SE, Collins SJ: Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci USA 1980;77:2936-2940.
Honma Y, Takenaga K, Kasukabe T, Hozumi M: Induction of differentiation of cultured human promyelocytic leukemia cells by retinoids. Biochem Biophys Res Commun 1980;95:507-512.
Momparler RL, Bouchard J, Samson J: Induction of differentiation and inhibition of DNA methylation in HL-60 myeloid leukemic cells by 5-AZA-2′-deoxycytidine. Leuk Res 1985;9:1361-1366.
Fabiani E, Leone G, Giachelia M, D'Alo F, Greco M, Criscuolo M, Guidi F, Rutella S, Hohaus S, Voso MT: Analysis of genome-wide methylation and gene expression induced by 5-aza-2'-deoxycytidine identifies BCL2L10 as a frequent methylation target in acute myeloid leukemia. Leuk Lymphoma 2010;51:2275-2284.
Herman JG, Civin CI, Issa JP, Collector MI, Sharkis SJ, Baylin SB: Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res 1997;57:837-841.
Uenogawa K, Hatta Y, Arima N, Hayakawa S, Sawada U, Aizawa S, Yamamoto T, Takeuchi J: Azacitidine induces demethylation of p16INK4a and inhibits growth in adult T-cell leukemia/lymphoma. Int J Mol Med 2011;28:835-839.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.