Chronic myeloid leukaemia (CML) is caused by the product of the BCR-ABL oncogene, located on the Philadelphia (Ph) chromosome. BCR-ABL is generated as a result of a reciprocal t(9;22) chromosomal translocation. The mechanisms responsible for this illegitimate recombination event remain elusive but are presumed to require a close spatial association of the translocation partners (chromosomes 9 and 22). BCR-ABL fusion transcripts can be detected by a sensitive reverse transcription-polymerase chain reaction (RT-PCR) in the leucocytes of some healthy individuals suggesting that chromosomal translocations may occur frequently in the general population. The presence of BCR-ABL fusion transcripts does not imply that the individual will inevitably develop CML since other conditions must be favourable for expansion of the abnormal clone. Breakpoints in the ABL gene occur within a 5′ segment. BCR-ABL fusion transcripts lack ABL exon a1 and consist of BCR exons fused directly to ABL exon a2. The breakpoints in the BCR gene on chromosome 22 are found within three defined regions. Depending on the position of the BCR breakpoint, fusion genes are generated that encode 190-, 210- or 230-kD forms of the Bcr-Abl tyrosine kinase. Since the ABL component of the fusion gene is largely invariant, it follows that variability in disease phenotype may be due to protein sequences encoded by the translocation partner, BCR. Different disease phenotypes are associated with each of the three Bcr-Abl oncoproteins, p190Bcr-Abl, p210Bcr-Abl and p230Bcr-Abl. Mechanisms associated with malignant transformation include altered cellular adhesion, activation of mitogenic signalling pathways, inhibition of apoptosis and proteasomal degradation of physiologically important cellular proteins. CML is subject to an inexorable progression from an ‘indolent’ chronic phase to a terminal blast crisis. Disease progression is presumed to be associated with the phenomenon of genomic instability.

1.
Nowell PC, Hungerford DA: A minute chromosome in human chronic granulocytic leukemia. Science 1960;132:1497.
2.
Rowley JD: Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973;243:290–293.
3.
Bartram CR, de Klein A, Hagemeijer A, van Agthoven T, Geurts vK, Bootsma D, Grosveld G, Ferguson-Smith MA, Davies T, Stone M: Translocation of c-ab1 oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia. Nature 1983;306:277–280.
4.
Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G: Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 1984;36:93–99.
5.
Lugo TG, Pendergast AM, Muller AJ, Witte ON: Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 1990;247:1079–1082.
6.
Daley GQ, Van Etten RA, Baltimore D: Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990;247:824–830.
7.
Druker BJ, Lydon NB: Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. J Clin Invest 2000;105:3–7.
8.
Savage DG, Antman KH: Imatinib mesylate – a new oral targeted therapy. N Engl J Med 2002;346:683–693.
9.
Richardson C, Jasin M: Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 2000;405:697–700.
10.
Khanna KK, Jackson SP: DNA double-strand breaks: Signaling, repair and the cancer connection. Nat Genet 2001;27:247–254.
11.
Surrallés J, Puerto S, Ramirez MJ, Creus A, Marcos R, Mullenders LH, Natarajan AT: Links between chromatin structure, DNA repair and chromosome fragility. Mutat Res 1998;404:39–44.
12.
Tanaka K, Takechi M, Hong J, Shigeta C, Oguma N, Kamada N, Takimoto Y, Kuramoto A, Dohy H, Kyo T: 9;22 translocation and bcr rearrangements in chronic myelocytic leukemia patients among atomic bomb survivors. J Radiat Res (Tokyo) 1989;30:352–358.
13.
Corso A, Lazzarino M, Morra E, Merante S, Astori C, Bernasconi P, Boni M, Bernasconi C: Chronic myelogenous leukemia and exposure to ionizing radiation – a retrospective study of 443 patients. Ann Hematol 1995;70:79–82.
14.
Preston DL, Kusumi S, Tomonaga M, Izumi S, Ron E, Kuramoto A, Kamada N, Dohy H, Matsuo T, Matsui T: Cancer incidence in atomic bomb survivors. III. Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat Res 1994;137(suppl 2):S68–S97.
15.
Berridge MV, Tan AS: Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2- yl)-2,5-diphenyltetrazolium bromide (MTT): Subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 1993;303:474–482.
16.
Deininger MW, Bose S, Gora-Tybor J, Yan XH, Goldman JM, Melo JV: Selective induction of leukemia-associated fusion genes by high-dose ionizing radiation. Cancer Res 1998;58:421–425.
17.
Kozubek S, Lukasova E, Mareckova A, Skalnikova M, Kozubek M, Bartova E, Kroha V, Krahulcova E, Slotova J: The topological organization of chromosomes 9 and 22 in cell nuclei has a determinative role in the induction of t(9,22) translocations and in the pathogenesis of t(9,22) leukemias. Chromosoma 1999;108:426–435.
18.
Neves H, Ramos C, da Silva MG, Parreira A, Parreira L: The nuclear topography of ABL, BCR, PML, and RARalpha genes: Evidence for gene proximity in specific phases of the cell cycle and stages of hematopoietic differentiation. Blood 1999;93:1197–1207.
19.
Anastasi J, Moinuddin R, Daugherty C: The juxtaposition of ABL with BCR and risk for fusion may come at the time of BCR replication in late S-phase. Blood 1999;94:1137–1138.
20.
Chissoe SL, Bodenteich A, Wang YF, Wang YP, Burian D, Clifton SW, Crabtree J, Freeman A, Iyer K, Jian L: Sequence and analysis of the human ABL gene, the BCR gene, and regions involved in the Philadelphia chromosomal translocation. Genomics 1995;27:67–82.
21.
Saglio G, Storlazzi CT, Giugliano E, Surace C, Anelli L, Rege-Cambrin G, Zagaria A, Jimenez VA, Heiniger A, Scaravaglio P, Torres GA, Roman GJ, Archidiacono N, Banfi S, Rocchi M: A 76-kb duplicon maps close to the BCR gene on chromosome 22 and the ABL gene on chromosome 9: Possible involvement in the genesis of the Philadelphia chromosome translocation. Proc Natl Acad Sci USA 2002;99:9882–9887.
22.
Sinclair PB, Nacheva EP, Leversha M, Telford N, Chang J, Reid A, Bench A, Champion K, Huntly B, Green AR: Large deletions at the t(9;22) breakpoint are common and may identify a poor-prognosis subgroup of patients with chronic myeloid leukemia. Blood 2000;95:738–743.
23.
Huntly BJ, Reid AG, Bench AJ, Campbell LJ, Telford N, Shepherd P, Szer J, Prince HM, Turner P, Grace C, Nacheva EP, Green AR: Deletions of the derivative chromosome 9 occur at the time of the Philadelphia translocation and provide a powerful and independent prognostic indicator in chronic myeloid leukemia. Blood 2001;98:1732–1738.
24.
de la FJ, Merx K, Steer EJ, Muller M, Szydlo RM, Maywald O, Berger U, Hehlmann R, Goldman JM, Cross NC, Melo JV, Hochhaus A: ABL-BCR expression does not correlate with deletions on the derivative chromosome 9 or survival in chronic myeloid leukemia. Blood 2001;98:2879–2880.
25.
Melo JV, Gordon DE, Tuszynski A, Dhut S, Young BD, Goldman JM: Expression of the ABL-BCR fusion gene in Philadelphia-positive acute lymphoblastic leukemia. Blood 1993;81:2488–2491.
26.
Shepherd P, Suffolk R, Halsey J, Allan N: Analysis of molecular breakpoint and m-RNA transcripts in a prospective randomized trial of interferon in chronic myeloid leukaemia: No correlation with clinical features, cytogenetic response, duration of chronic phase, or survival. Br J Haematol 1995;89:546–554.
27.
Melo JV: The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood 1996;88:2375–2384.
28.
Ravandi F, Cortes J, Albitar M, Arlinghaus R, Qiang GJ, Talpaz M, Kantarjian HM: Chronic myelogenous leukaemia with p185(BCR/ABL) expression: Characteristics and clinical significance. Br J Haematol 1999;107:581–586.
29.
Dhingra K, Talpaz M, Kantarjian H, Ku S, Rothberg J, Gutterman JU, Kurzrock R: Appearance of acute leukemia-associated P190BCR-ABL in chronic myelogenous leukemia may correlate with disease progression. Leukemia 1991;5:191–195.
30.
Pane F, Frigeri F, Sindona M, Luciano L, Ferrara F, Cimino R, Meloni G, Saglio G, Salvatore F, Rotoli B: Neutrophilic-chronic myeloid leukemia: A distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood 1996;88:2410–2414.
31.
van Rhee F, Hochhaus A, Lin F, Melo JV, Goldman JM, Cross NC: p190 BCR-ABL mRNA is expressed at low levels in p210-positive chronic myeloid and acute lymphoblastic leukemias. Blood 1996;87:5213–5217.
32.
Lichty BD, Keating A, Callum J, Yee K, Croxford R, Corpus G, Nwachukwu B, Kim P, Guo J, Kamel-Reid S: Expression of p210 and p190 BCR-ABL due to alternative splicing in chronic myelogenous leukaemia. Br J Haematol 1998;103:711–715.
33.
Lichty BD, Kamel-Reid S: Exon-skipping in BCR/ABL is induced by ABL exon 2. Biochem J 2000;348(pt 1):63–69.
34.
Hochhaus A, Reiter A, Skladny H, Melo JV, Sick C, Berger U, Guo JQ, Arlinghaus RB, Hehlmann R, Goldman JM, Cross NC: A novel BCR-ABL fusion gene (e6a2) in a patient with Philadelphia chromosome-negative chronic myelogenous leukemia. Blood 1996;88:2236–2240.
35.
Leibundgut EO, Jotterand M, Rigamonti V, Parlier V, Muhlematter D, Tobler A, Solenthaler M: A novel BCR-ABL transcript e2a2 in a chronic myelogenous leukaemia patient with a duplicated Ph-chromosome and monosomy 7. Br J Haematol 1999;106:1041–1044.
36.
How GF, Lim LC, Kulkarni S, Tan LT, Tan P, Cross NC: Two patients with novel BCR/ABL fusion transcripts (e8/a2 and e13/a2) resulting from translocation breakpoints within BCR exons. Br J Haematol 1999;105:434–436.
37.
Moreno MP, Cortinas MN, Bonomi R, Cardeza A, Uriarte MR: A novel BCR-ABL fusion transcript (e15a2) in 2 patients with atypical chronic myeloproliferative syndrome. Blood 2001;97:3668–3669.
38.
Byrne JL, Carter GI, Davies JM, Haynes AP, Russell NH, Cross NC: A novel BCR-ABL fusion gene (e2/1a) in a patient with Philadelphia-positive chronic myelogenous leukaemia and an aggressive clinical course. Br J Haematol 1998;103:791–794.
39.
Soekarman D, van Denderen J, Hoefsloot L, Moret M, Meeuwsen T, van Baal J, Hagemeijer A, Grosveld G: A novel variant of the bcr-abl fusion product in Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia 1990;4:397–403.
40.
Wilson GA, Vandenberghe EA, Pollitt RC, Rees DC, Goodeve AC, Peake IR, Reilly JT: Are aberrant BCR–ABL transcripts more common than previously thought? Br J Haematol 2000;111:1109–1111.
41.
Al-Ali H-K, Leiblein S, Kovacs I, Hennig E, Niederwieser D, Deininger MWN: CML with an e1a3 BCR-ABL fusion: Rare, benign, and a potential diagnostic pitfall. Blood 2002;100:1092–1093.
42.
Inukai T, Sugita K, Suzuki T, Ijima K, Goi K, Tezuka T, Kojika S, Hatakeyama K, Kagami K, Mori T: A novel 203 kD aberrant BCR-ABL product in a girl with Philadelphia chromosome positive acute lymphoblastic leukaemia. Br J Haematol 1993;85:823–825.
43.
Cross NC, Melo JV, Feng L, Goldman JM: An optimized multiplex polymerase chain reaction (PCR) for detection of BCR-ABL fusion mRNAs in haematological disorders. Leukemia 1994;8:186–189.
44.
Branford S, Rudzki Z, Hughes TP: A novel BCR-ABL transcript (e8a2) with the insertion of an inverted sequence of ABL intron 1b in a patient with Philadelphia-positive chronic myeloid leukaemia. Br J Haematol 2000;109:635–637.
45.
Roman J, Parziale A, Gottardi E, De Micheli D, Cilloni D, Tiribelli M, Gonzalez MG, del Carmen RM, Torres A, Saglio G: Novel type of BCR-ABL transcript in a chronic myelogenous leukaemia patient relapsed after bone marrow transplantation. Br J Haematol 2000;111:644–646.
46.
Shiratsuchi M, Muta K, Minami R, Motomura S, Suehiro Y, Abe Y, Shiokawa S, Umemura T, Fukui T, Nishimura J, Nawata H: Aberrant BCR-ABL transcript with intronic insertion in a patient with philadelphia chromosome-positive chronic myeloid leukemia: Implications for disease progression. Leuk Lymphoma 2001;41:411–415.
47.
Biernaux C, Sels A, Huez G, Stryckmans P: Very low level of major BCR-ABL expression in blood of some healthy individuals. Bone Marrow Transplant 1996;17(suppl 3):S45–S47.
48.
Bose S, Deininger M, Gora-Tybor J, Goldman JM, Melo JV: The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: Biologic significance and implications for the assessment of minimal residual disease. Blood 1998;92:3362–3367.
49.
Laurent E, Talpaz M, Kantarjian H, Kurzrock R: The BCR gene and philadelphia chromosome-positive leukemogenesis. Cancer Res 2001;61:2343–2355.
50.
Maru Y, Witte ON: The BCR gene encodes a novel serine/threonine kinase activity within a single exon. Cell 1991;67:459–468.
51.
Reuther GW, Fu H, Cripe LD, Collier RJ, Pendergast AM: Association of the protein kinases c-Bcr and Bcr-Abl with proteins of the 14-3-3 family. Science 1994;266:129–133.
52.
Pendergast AM, Quilliam LA, Cripe LD, Bassing CH, Dai Z, Li N, Batzer A, Rabun KM, Der CJ, Schlessinger J: BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 1993;75:175–185.
53.
Pendergast AM, Muller AJ, Havlik MH, Maru Y, Witte ON: BCR sequences essential for transformation by the BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner. Cell 1991;66:161–171.
54.
McWhirter JR, Galasso DL, Wang JY: A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Mol Cell Biol 1993;13:7587–7595.
55.
Zhao X, Ghaffari S, Lodish H, Malashkevich VN, Kim PS: Structure of the Bcr-Abl oncoprotein oligomerization domain. Nat Struct Biol 2002;9:117–120.
56.
Janssen JW, Ridge SA, Papadopoulos P, Cotter F, Ludwig WD, Fonatsch C, Rieder H, Ostertag W, Bartram CR, Wiedemann LM: The fusion of TEL and ABL in human acute lymphoblastic leukaemia is a rare event. Br J Haematol 1995;90:222–224.
57.
Golub TR, Goga A, Barker GF, Afar DE, McLaughlin J, Bohlander SK, Rowley JD, Witte ON, Gilliland DG: Oligomerization of the ABL tyrosine kinase by the Ets protein TEL in human leukemia. Mol Cell Biol 1996;16:4107–4116.
58.
He Y, Wertheim JA, Xu L, Miller JP, Karnell FG, Choi JK, Ren R, Pear WS: The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia-like disease by bcr/abl. Blood 2002;99:2957–2968.
59.
Hart MJ, Eva A, Evans T, Aaronson SA, Cerione RA: Catalysis of guanine nucleotide exchange on the CDC42Hs protein by the dbl oncogene product. Nature 1991;354:311–314.
60.
Cen H, Papageorge AG, Zippel R, Lowy DR, Zhang K: Isolation of multiple mouse cDNAs with coding homology to Saccharomyces cerevisiae CDC25: Identification of a region related to Bcr, Vav, Dbl and CDC24. EMBO J 1992;11:4007–4015.
61.
Diekmann D, Brill S, Garrett MD, Totty N, Hsuan J, Monfries C, Hall C, Lim L, Hall A: Bcr encodes a GTPase-activating protein for p21rac. Nature 1991;351:400–402.
62.
Voncken JW, van Schaick H, Kaartinen V, Deemer K, Coates T, Landing B, Pattengale P, Dorseuil O, Bokoch GM, Groffen J: Increased neutrophil respiratory burst in bcr-null mutants. Cell 1995;80:719–728.
63.
Abelson HT, Rabstein LS: Lymphosarcoma: Virus-induced thymic-independent disease in mice. Cancer Res 1970;30:2213–2222.
64.
Feller SM, Knudsen B, Hanafusa H: c-Abl kinase regulates the protein binding activity of c-Crk. EMBO J 1994;13:2341–2351.
65.
Sattler M, Salgia R, Okuda K, Uemura N, Durstin MA, Pisick E, Xu G, Li JL, Prasad KV, Griffin JD: The proto-oncogene product p120CBL and the adaptor proteins CRKL and c-CRK link c-ABL, p190BCR/ABL and p210BCR/ABL to the phosphatidylinositol-3′ kinase pathway. Oncogene 1996;12:839–846.
66.
McWhirter JR, Wang JY: An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias. EMBO J 1993;12:1533–1546.
67.
Kipreos ET, Wang JY: Cell cycle-regulated binding of c-Abl tyrosine kinase to DNA. Science 1992;256:382–385.
68.
Wen ST, Jackson PK, Van Etten RA: The cytostatic function of c-Abl is controlled by multiple nuclear localization signals and requires the p53 and Rb tumor suppressor gene products. EMBO J 1996;15:1583–1595.
69.
Taagepera S, McDonald D, Loeb JE, Whitaker LL, McElroy AK, Wang JY, Hope TJ: Nuclear-cytoplasmic shuttling of C-ABL tyrosine kinase. Proc Natl Acad Sci USA 1998;95:7457–7462.
70.
Van Etten RA, Jackson P, Baltimore D: The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization. Cell 1989;58:669–678.
71.
Van Etten RA: Cycling, stressed-out and nervous: Cellular functions of c-Abl. Trends Cell Biol 1999;9:179–186.
72.
Sawyers CL, McLaughlin J, Goga A, Havlik M, Witte O: The nuclear tyrosine kinase c-Abl negatively regulates cell growth. Cell 1994;77:121–131.
73.
Yuan ZM, Shioya H, Ishiko T, Sun X, Gu J, Huang YY, Lu H, Kharbanda S, Weichselbaum R, Kufe D: p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature 1999;399:814–817.
74.
Lewis JM, Schwartz MA: Integrins regulate the association and phosphorylation of paxillin by c-Abl. J Biol Chem 1998;273:14225–14230.
75.
Cooper JA, Gould KL, Cartwright CA, Hunter T: Tyr527 is phosphorylated in pp60c-src: Implications for regulation. Science 1986;231:1431–1434.
76.
Xu W, Harrison SC, Eck MJ: Three-dimensional structure of the tyrosine kinase c-Src. Nature 1997;385:595–602.
77.
Pendergast AM, Muller AJ, Havlik MH, Clark R, McCormick F, Witte ON: Evidence for regulation of the human ABL tyrosine kinase by a cellular inhibitor. Proc Natl Acad Sci USA 1991;88:5927–5931.
78.
Goga A, McLaughlin J, Pendergast AM, Parmar K, Muller A, Rosenberg N, Witte ON: Oncogenic activation of c-ABL by mutation within its last exon. Mol Cell Biol 1993;13:4967–4975.
79.
Pluk H, Dorey K, Superti-Furga G: Autoinhibition of c-Abl. Cell 2002;108:247–259.
80.
Mayer BJ, Baltimore D: Mutagenic analysis of the roles of SH2 and SH3 domains in regulation of the Abl tyrosine kinase. Mol Cell Biol 1994;14:2883–2894.
81.
Ilaria RL Jr, Van Etten RA: The SH2 domain of P210BCR/ABL is not required for the transformation of hematopoietic factor-dependent cells. Blood 1995;86:3897–3904.
82.
Shi Y, Alin K, Goff SP: Abl-interactor-1, a novel SH3 protein binding to the carboxy-terminal portion of the Abl protein, suppresses v-abl transforming activity. Genes Dev 1995;9:2583–2597.
83.
Dai Z, Pendergast AM: Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity. Genes Dev 1995;9:2569–2582.
84.
Dai Z, Quackenbush RC, Courtney KD, Grove M, Cortez D, Reuther GW, Pendergast AM: Oncogenic Abl and Src tyrosine kinases elicit the ubiquitin-dependent degradation of target proteins through a Ras-independent pathway. Genes Dev 1998;12:1415–1424.
85.
Wen ST, Van Etten RA: The PAG gene product, a stress-induced protein with antioxidant properties, is an Abl SH3-binding protein and a physiological inhibitor of c-Abl tyrosine kinase activity. Genes Dev 1997;11:2456–2467.
86.
Mills KI, MacKenzie ED, Birnie GD: The site of the breakpoint within the bcr is a prognostic factor in Philadelphia-positive CML patients. Blood 1988;72:1237–1241.
87.
Shtalrid M, Talpaz M, Kurzrock R, Kantarjian H, Trujillo J, Gutterman J, Yoffe G, Blick M: Analysis of breakpoints within the bcr gene and their correlation with the clinical course of Philadelphia-positive chronic myelogenous leukemia. Blood 1988;72:485–490.
88.
Mills KI, Sproul AM, Leibowitz D, Burnett AK: Mapping of breakpoints, and relationship to BCR-ABL RNA expression, in Philadelphia-chromosome-positive chronic myeloid leukaemia patients with a breakpoint around exon 14 (b3) of the BCR gene. Leukemia 1991;5:937–941.
89.
Morris SW, Daniel L, Ahmed CM, Elias A, Lebowitz P: Relationship of bcr breakpoint to chronic phase duration, survival, and blast crisis lineage in chronic myelogenous leukemia patients presenting in early chronic phase. Blood 1990;75:2035–2041.
90.
Jaubert J, Martiat P, Dowding C, Ifrah N, Goldman JM: The position of the M-BCR breakpoint does not predict the duration of chronic phase or survival in chronic myeloid leukemia. Br J Haematol 1990;74:30–35.
91.
Rozman C, Urbano-Ispizua A, Cervantes F, Rozman M, Colomer D, Feliz P, Pujades A, Vives Corrons JL: Analysis of the clinical relevance of the breakpoint location within M- BCR and the type of chimeric mRNA in chronic myelogenous leukemia. Leukemia 1995;9:1104–1107.
92.
Inokuchi K, Inoue T, Tojo A, Futaki M, Miyake K, Yamada T, Tanabe Y, Ohki I, Dan K, Ozawa K: A possible correlation between the type of bcr-abl hybrid messenger RNA and platelet count in Philadelphia-positive chronic myelogenous leukemia. Blood 1991;78:3125–3127.
93.
Perego RA, Costantini M, Cornacchini G, Gargantini L, Bianci C, Pungolino E, Rovida E, Morra E: The possible influences of B2A2 and B3A2 BCR/ABL protein structure on thrombopoiesis in chronic myeloid leukaemia. Eur J Cancer 2000;36:1395–1401.
94.
Ardern JC, Speak J, Hyde K, Hunt LP, Lawson R, Gorst DW, Geary CG, Lucas GS: Molecular analysis in chronic granulocytic leukaemia: Location of breakpoints within M-BCR and relationship with presentation platelet counts. Clin Lab Haematol 1993;15:253–258.
95.
Opalka B, Wandl UB, Stutenkemper R, Kloke O, Seeber S, Niederle N: No correlation between the type of bcr-abl hybrid messenger RNA and platelet counts in chronic myelogenous leukemia. Blood 1992;80:1854–1855.
96.
Martiat P, Ifrah N, Rassool F, Morgan G, Giles F, Gow J, Goldman JM: Molecular analysis of Philadelphia positive essential thrombocythemia. Leukemia 1989;3:563–565.
97.
Emilia G, Luppi M, Ferrari MG, Temperani P, Marasca R, Giacobbi F, Vaccari P, Bandieri E, Di Donato C, Carapezzi C, Torelli G: Chronic myeloid leukemia with thrombocythemic onset may be associated with different BCR/ABL variant transcripts. Cancer Genet Cytogenet 1998;101:75–77.
98.
Saglio G, Guerrasio A, Rosso C, Zaccaria A, Tassinari A, Serra A, Rege-Cambrin G, Mazza U, Gavosto F: New type of Bcr/Abl junction in Philadelphia chromosome-positive chronic myelogenous leukemia. Blood 1990;76:1819–1824.
99.
Briz M, Vilches C, Cabrera R, Fores R, Fernandez MN: Typical chronic myelogenous leukemia with e19a2 junction BCR/ABL transcript. Blood 1997;90:5024–5025.
100.
Wilson G, Frost L, Goodeve A, Vandenberghe E, Peake I, Reilly J: BCR-ABL transcript with an e19a2 (c3a2) junction in classical chronic myeloid leukemia. Blood 1997;89:3064.
101.
Yamagata T, Mitani K, Kanda Y, Yazaki Y, Hirai H: Elevated platelet count features the variant type of BCR/ABL junction in chronic myelogenous leukaemia. Br J Haematol 1996;94:370–372.
102.
Mittre H, Leymarie P, Macro M, Leporrier M: A new case of chronic myeloid leukemia with c3/a2 BCR/ABL junction. Is it really a distinct disease? Blood 1997;89:4239–4241.
103.
Wada H, Mizutani S, Nishimura J, Usuki Y, Kohsaki M, Komai M, Kaneko H, Sakamoto S, Delia D, Kanamaru A: Establishment and molecular characterization of a novel leukemic cell line with Philadelphia chromosome expressing p230 BCR/ABL fusion protein. Cancer Res 1995;55:3192–3196.
104.
Rotoli B, Luciano L, Pane F, Salvatore F, Saglio G: A new case of chronic myeloid leukemia with c3/a2 BCR/ABL junction. Is it really a distinct disease? Blood 1997;89:4239–4241.
105.
Imbert M, Pierre R, Thiele J, Vardiman J, Brunning R, Flandrin G: Essential thrombocythaemia. Tumours of Haematopoietic and Lymphoid Tissues. Lyon, IARC Press, 2001, pp39–41.
106.
Verstovsek S, Lin H, Kantarjian H, Saglio G, De Micheli D, Pane F, Garcia-Manero G, Intrieri M, Rotoli B, Salvatore F, Guo JQ, Talpaz M, Specchia G, Pizzolo G, Liberati AM, Cortes J, Quackenbush RC, Arlinghaus RB: Neutrophilic-chronic myeloid leukemia. Cancer 2002;94:2416–2425.
107.
Ahmed S, Lee J, Wen LP, Zhao Z, Ho J, Best A, Kozma R, Lim L: Breakpoint cluster region gene product-related domain of n-chimaerin. Discrimination between Rac-binding and GTPase-activating residues by mutational analysis. J Biol Chem 1994;269:17642–17648.
108.
Haskovec C, Ponzetto C, Polak J, Maritano D, Zemanova Z, Serra A, Michalova K, Klamova H, Cermak J, Saglio G: P230 BCR/ABL protein may be associated with an acute leukaemia phenotype. Br J Haematol 1998;103:1104–1108.
109.
Stewart MJ, Cox G, Reifel-Miller A, Kim SY, Westbrook CA, Leibowitz DS: A novel transcriptional suppressor located within a downstream intron of the BCR gene. J Biol Chem 1994;269:10820–10829.
110.
Verfaillie CM, Hurley R, Lundell BI, Zhao C, Bhatia R: Integrin-mediated regulation of hematopoiesis: Do BCR/ABL-induced defects in integrin function underlie the abnormal circulation and proliferation of CML progenitors? Acta Haematol 1997;97:40–52.
111.
Gordon MY, Dowding CR, Riley GP, Goldman JM, Greaves MF: Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukaemia. Nature 1987;328:342–344.
112.
Bhatia R, Wayner EA, McGlave PB, Verfaillie CM: Interferon-alpha restores normal adhesion of chronic myelogenous leukemia hematopoietic progenitors to bone marrow stroma by correcting impaired beta 1 integrin receptor function. J Clin Invest 1994;94:384–391.
113.
Salgia R, Li JL, Lo SH, Brunkhorst B, Kansas GS, Sobhany ES, Sun Y, Pisick E, Hallek M, Ernst T: Molecular cloning of human paxillin, a focal adhesion protein phosphorylated by P210BCR/ABL. J Biol Chem 1995;270:5039–5047.
114.
Uemura N, Griffin JD: The adapter protein Crkl links Cbl to C3G after integrin ligation and enhances cell migration. J Biol Chem 1999;274:37525–37532.
115.
Salgia R, Pisick E, Sattler M, Li JL, Uemura N, Wong WK, Burky SA, Hirai H, Chen LB, Griffin JD: p130CAS forms a signaling complex with the adapter protein CRKL in hematopoietic cells transformed by the BCR/ABL oncogene. J Biol Chem 1996;271:25198–25203.
116.
Sattler M, Salgia R, Shrikhande G, Verma S, Uemura N, Law SF, Golemis EA, Griffin JD: Differential signaling after beta1 integrin ligation is mediated through binding of CRKL to p120(CBL) and p110(HEF1). J Biol Chem 1997;272:14320–14326.
117.
Deininger MW, Vieira S, Mendiola R, Schultheis B, Goldman JM, Melo JV: BCR-ABL tyrosine kinase activity regulates the expression of multiple genes implicated in the pathogenesis of chronic myeloid leukemia. Cancer Res 2000;60:2049–2055.
118.
Bazzoni G, Carlesso N, Griffin JD, Hemler ME: Bcr/Abl expression stimulates integrin function in hematopoietic cell lines. J Clin Invest 1996;98:521–528.
119.
Krämer A, Hörner S, Willer A, Fruehauf S, Hochhaus A, Hallek M, Hehlmann R: Adhesion to fibronectin stimulates proliferation of wild-type and bcr/abl-transfected murine hematopoietic cells. Proc Natl Acad Sci USA 1999;96:2087–2092.
120.
Barnes DJ, Goldman JM, Melo JV: Dose dependent effects of Bcr-Abl on the phenotype of murine haematopoietic cells (abstract). Blood 2001;98:145a.
121.
Deininger MW, Goldman JM, Melo JV: The molecular biology of chronic myeloid leukemia. Blood 2000;96:3343–3356.
122.
Puil L, Liu J, Gish G, Mbamalu G, Bowtell D, Pelicci PG, Arlinghaus R, Pawson T: Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway. EMBO J 1994;13:764–773.
123.
Pelicci G, Lanfrancone L, Salcini AE, Romano A, Mele S, Grazia BM, Segatto O, Di Fiore PP, Pelicci PG: Constitutive phosphorylation of Shc proteins in human tumors. Oncogene 1995;11:899–907.
124.
Oda T, Heaney C, Hagopian JR, Okuda K, Griffin JD, Druker BJ: Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia. J Biol Chem 1994;269:22925–22928.
125.
Senechal K, Halpern J, Sawyers CL: The CRKL adaptor protein transforms fibroblasts and functions in transformation by the BCR-ABL oncogene. J Biol Chem 1996;271:23255–23261.
126.
Heaney C, Kolibaba K, Bhat A, Oda T, Ohno S, Fanning S, Druker BJ: Direct binding of CRKL to BCR-ABL is not required for BCR-ABL transformation. Blood 1997;89:297–306.
127.
Marais R, Light Y, Paterson HF, Marshall CJ: Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J 1995;14:3136–3145.
128.
Chang L, Karin M: Mammalian MAP kinase signalling cascades. Nature 2001;410:37–40.
129.
Cahill MA, Janknecht R, Nordheim A: Signalling pathways: Jack of all cascades. Curr Biol 1996;6:16–19.
130.
Kabarowski JH, Allen PB, Wiedemann LM: A temperature sensitive p210 BCR-ABL mutant defines the primary consequences of BCR-ABL tyrosine kinase expression in growth factor dependent cells. EMBO J 1994;13:5887–5895.
131.
Cortez D, Reuther G, Pendergast AM: The Bcr-Abl tyrosine kinase activates mitogenic signaling pathways and stimulates G1-to-S phase transition in hematopoietic cells. Oncogene 1997;15:2333–2342.
132.
Raitano AB, Halpern JR, Hambuch TM, Sawyers CL: The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation. Proc Natl Acad Sci USA 1995;92:11746–11750.
133.
Shi CS, Tuscano JM, Witte ON, Kehrl JH: GCKR links the Bcr-Abl oncogene and Ras to the stress-activated protein kinase pathway. Blood 1999;93:1338–1345.
134.
Mayer IA, Verma A, Grumbach IM, Uddin S, Lekmine F, Ravandi F, Majchrzak B, Fujita S, Fish EN, Platanias LC: The p38 MAPK pathway mediates the growth inhibitory effects of interferon-alpha in BCR-ABL-expressing cells. J Biol Chem 2001;276:28570–28577.
135.
Ilaria RL, Jr., Van Etten RA: P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem 1996;271:31704–31710.
136.
Chai SK, Nichols GL, Rothman P: Constitutive activation of JAKs and STATs in BCR-Abl-expressing cell lines and peripheral blood cells derived from leukemic patients. J Immunol 1997;159:4720–4728.
137.
Horvath CM: STAT proteins and transcriptional responses to extracellular signals. Trends Biochem Sci 2000;25:496–502.
138.
de Groot RP, Raaijmakers JA, Lammers JW, Jove R, Koenderman L: STAT5 activation by BCR-Abl contributes to transformation of K562 leukemia cells. Blood 1999;94:1108–1112.
139.
Nosaka T, Kawashima T, Misawa K, Ikuta K, Mui AL, Kitamura T: STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells. EMBO J 1999;18:4754–4765.
140.
Horita M, Andreu EJ, Benito A, Arbona C, Sanz C, Benet I, Prosper F, Fernandez-Luna JL: Blockade of the Bcr-Abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bcl-xL. J Exp Med 2000;191:977–984.
141.
Sillaber C, Gesbert F, Frank DA, Sattler M, Griffin JD: STAT5 activation contributes to growth and viability in Bcr/Abl- transformed cells. Blood 2000;95:2118–2125.
142.
Gesbert F, Griffin JD: Bcr/Abl activates transcription of the Bcl-X gene through STAT5. Blood 2000;96:2269–2276.
143.
Skorski T, Kanakaraj P, Nieborowska-Skorska M, Ratajczak MZ, Wen SC, Zon G, Gewirtz AM, Perussia B, Calabretta B: Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 1995;86:726–736.
144.
Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK, Trotta R, Wlodarski P, Perrotti D, Chan TO, Wasik MA, Tsichlis PN, Calabretta B: Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J 1997;16:6151–6161.
145.
Gesbert F, Sellers WR, Signoretti S, Loda M, Griffin JD: BCR/ABL regulates expression of the cyclin-dependent kinase inhibitor p27Kip1 through the phosphatidylinositol 3-Kinase/AKT pathway. J Biol Chem 2000;275:39223–39230.
146.
Franke TF, Kaplan DR, Cantley LC: PI3K: Downstream AKTion blocks apoptosis. Cell 1997;88:435–437.
147.
del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G: Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 1997;278:687–689.
148.
Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ: Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 1996;87:619–628.
149.
Sawyers CL, Callahan W, Witte ON: Dominant negative MYC blocks transformation by ABL oncogenes. Cell 1992;70:901–910.
150.
Zou X, Rudchenko S, Wong K, Calame K: Induction of c-myc transcription by the v-Abl tyrosine kinase requires Ras, Raf1, and cyclin-dependent kinases. Genes Dev 1997;11:654–662.
151.
Menssen A, Hermeking H: From the Cover: Characterization of the c-MYC-regulated transcriptome by SAGE: Identification and analysis of c-MYC target genes. Proc Natl Acad Sci USA 2002;99:6274–6279.
152.
Bedi A, Zehnbauer BA, Barber JP, Sharkis SJ, Jones RJ: Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia. Blood 1994;83:2038–2044.
153.
Daley GQ, Baltimore D: Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl protein. Proc Natl Acad Sci USA 1988;85:9312–9316.
154.
Sirard C, Laneuville P, Dick JE: Expression of bcr-abl abrogates factor-dependent growth of human hematopoietic M07E cells by an autocrine mechanism. Blood 1994;83:1575–1585.
155.
Bedi A, Barber JP, Bedi GC, el Deiry WS, Sidransky D, Vala MS, Akhtar AJ, Hilton J, Jones RJ: BCR-ABL-mediated inhibition of apoptosis with delay of G2/M transition after DNA damage: A mechanism of resistance to multiple anticancer agents. Blood 1995;86:1148–1158.
156.
Amos TA, Lewis JL, Grand FH, Gooding RP, Goldman JM, Gordon MY: Apoptosis in chronic myeloid leukaemia: Normal responses by progenitor cells to growth factor deprivation, X-irradiation and glucocorticoids. Br J Haematol 1995;91:387–393.
157.
Amarante-Mendes GP, Naekyung KC, Liu L, Huang Y, Perkins CL, Green DR, Bhalla K: Bcr-Abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome C and activation of caspase-3. Blood 1998;91:1700–1705.
158.
Dubrez L, Eymin B, Sordet O, Droin N, Turhan AG, Solary E: BCR-ABL delays apoptosis upstream of procaspase-3 activation. Blood 1998;91:2415–2422.
159.
Sanchez-Garcia I, Martin-Zanca D: Regulation of Bcl-2 gene expression by BCR-ABL is mediated by Ras. J Mol Biol 1997;267:225–228.
160.
Wang HG, Rapp UR, Reed JC: Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 1996;87:629–638.
161.
Neshat MS, Raitano AB, Wang HG, Reed JC, Sawyers CL: The survival function of the Bcr-Abl oncogene is mediated by Bad-dependent and -independent pathways: Roles for phosphatidylinositol 3-kinase and Raf. Mol Cell Biol 2000;20:1179–1186.
162.
Gabriele L, Phung J, Fukumoto J, Segal D, Wang IM, Giannakakou P, Giese NA, Ozato K, Morse HC, III: Regulation of apoptosis in myeloid cells by interferon consensus sequence-binding protein. J Exp Med 1999;190:411–421.
163.
Hao SX, Ren R: Expression of interferon consensus sequence binding protein (ICSBP) is downregulated in Bcr-Abl-induced murine chronic myelogenous leukemia-like disease, and forced coexpression of ICSBP inhibits Bcr-Abl-induced myeloproliferative disorder. Mol Cell Biol 2000;20:1149–1161.
164.
Vigneri P, Wang JY: Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase. Nat Med 2001;7:228–234.
165.
Melo JV: Inviting leukaemic cells to waltz with the devil. Nature Medicine 2001;7:156–157.
166.
Deutsch E, Dugray A, AbdulKarim B, Marangoni E, Maggiorella L, Vaganay S, M’Kacher R, Rasy SD, Eschwege F, Vainchenker W, Turhan AG, Bourhis J: BCR-ABL down-regulates the DNA repair protein DNA-PKcs. Blood 2001;97:2084–2090.
167.
Jonuleit T, van der KH, Miething C, Michels H, Hallek M, Duyster J, Aulitzky WE: Bcr-Abl kinase down-regulates cyclin-dependent kinase inhibitor p27 in human and murine cell lines. Blood 2000;96:1933–1939.
168.
Goetz AW, van der KH, Maya R, Oren M, Aulitzky WE: Requirement for Mdm2 in the survival effects of Bcr-Abl and interleukin 3 in hematopoietic cells. Cancer Res 2001;61:7635–7641.
169.
Goldman JM, Melo JV: Targeting the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001;344:1084–1086.
170.
Buchdunger E, Zimmermann J, Mett H, Meyer T, Muller M, Druker BJ, Lydon NB: Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res 1996;56:100–104.
171.
Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, Zimmermann J, Lydon NB: Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996;2:561–566.
172.
Deininger MW, Goldman JM, Lydon N, Melo JV: The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells. Blood 1997;90:3691–3698.
173.
Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL: Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001;344:1031–1037.
174.
Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C, Niederwieser D, Resta D, Capdeville R, Zoellner U, Talpaz M, Druker B: Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 2002;346:645–652.
175.
Sawyers CL, Hochhaus A, Feldman E, Goldman JM, Miller CB, Ottmann OG, Schiffer CA, Talpaz M, Guilhot F, Deininger MW, Fischer T, O’Brien SG, Stone RM, Gambacorti-Passerini CB, Russell NH, Reiffers JJ, Shea TC, Chapuis B, Coutre S, Tura S, Morra E, Larson RA, Saven A, Peschel C, Gratwohl A, Mandelli F, Ben Am M, Gathmann I, Capdeville R, Paquette RL, Druker BJ: Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: Results of a phase II study. Blood 2002;99:3530–3539.
176.
Elliott MA, Mesa RA, Tefferi A: Adverse events after imatinib mesylate therapy. N Engl J Med 2002;346:712–713.
177.
Mahon FX, Deininger MW, Schultheis B, Chabrol J, Reiffers J, Goldman JM, Melo JV: Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: Diverse mechanisms of resistance. Blood 2000;96:1070–1079.
178.
Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL: Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001;293:876–880.
179.
Barthe C, Cony-Makhoul P, Melo JV, Mahon JR: Roots of clinical resistance to STI-571 cancer therapy. Science 2001;293:2163.
180.
Kreil S, Müller MC, Lahaye T, La Rosée P, Corbin AS, Schoch C, Cross NCP, Berger U, Rieder H, Druker BJ, Gschaidmeier H, Hehlmann R, Hochhaus A: Molecular and chromosomal mechanisms of resistance in CML patients after STI571 (Glivec) therapy. Blood 2001;98:435a.
181.
von Bubnoff N, Schneller F, Peschel C, Duyster J: BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: A prospective study. Lancet 2002;359:487–491.
182.
Branford S, Rudzki Z, Walsh S, Grigg A, Arthur C, Taylor K, Herrmann R, Lynch KP, Hughes TP: High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood 2002;99:3472–3475.
183.
Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L, Holyoake TL: Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 2002;99:319–325.
184.
Holtz MS, Slovak ML, Zhang F, Sawyers CL, Forman SJ, Bhatia R: Imatinib mesylate (STI571) inhibits growth of primitive malignant progenitors in chronic myelogenous leukemia through reversal of abnormally increased proliferation. Blood 2002;99:3792–3800.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.