Introduction: Oral cancer, especially oral squamous cell carcinoma (OSCC), is a global health challenge due to factors such as late detection and high mortality rates. Early detection is essential through monitoring by healthcare professionals. Cytopathology is a cellular analysis model for evaluating cellular damage preceding the clinical appearance of OSCC, but it requires training and has diagnostic limitations, due to its subjective aspect. Artificial intelligence (AI) shows potential to enhance the interpretation of cytological images, reducing working time and subjectivity. Objective: The aim of the study was to compare the effectiveness of human analyses versus AI system assessment of oral cell smears stained by the Papanicolaou technique. Methodology: The study comprised 57 patients in Porto Alegre – RS divided into four groups: control group (CG), exposed group (EG), oral potentially malignant disorders group (OPMDG), and OSCC group (OSCCG). Cytopathological smears were collected from the border of the tongue of CG and EG and from the lesional area in OSCCG and OPMDG. The Papanicolaou technique was performed according to standard protocol, with morphological analysis. Images were analyzed by two human examiners as well as by an AI system (Papanicolaou Slide Image Examiner [PSIE]). Results: Concordance between human and PSIE was good. The proportion of cytological findings between human and PSIE was similar, and the analysis time of PSIE was 16.6 times shorter than that of human researchers. Conclusion: The use of AI for OSCC screening is promising and demonstrated to be a suitable tool for routine use mainly with the advance of IA-human concordance analysis and serving as a tool to accelerate the analytical process.

1.
Shield
KD
,
Ferlay
J
,
Jemal
A
,
Sankaranarayanan
R
,
Chaturvedi
AK
,
Bray
F
, et al
.
The global incidence of lip, oral cavity, and pharyngeal cancers by subsite in 2012
.
CA Cancer J Clin
.
2017
;
67
(
1
):
51
64
.
2.
Warnakulasuriya
S
.
Global epidemiology of oral and oropharyngeal cancer
.
Oral Oncol
.
2009
;
45
(
4–5
):
309
16
.
3.
Walsh
T
,
Warnakulasuriya
S
,
Lingen
MW
,
Kerr
AR
,
Ogden
GR
,
Glenny
AM
, et al
.
Clinical assessment for the detection of oral cavity cancer and potentially malignant disorders in apparently healthy adults
.
CDRS
.
2021
;
2021
(
12
).
4.
Sahu
A
,
Gera
P
,
Pai
V
,
Dubey
A
,
Tyagi
G
,
Waghmare
M
, et al
.
Raman exfoliative cytology for oral precancer diagnosis
.
J Biomed Opt
.
2017
;
22
(
11
):
1
12
.
5.
Alsarraf
A
,
Kujan
O
,
Farah
CS
.
Liquid-based oral brush cytology in the diagnosis of oral leukoplakia using a modified Bethesda Cytology system
.
J Oral Pathol Med
.
2018
;
47
(
9
):
887
94
.
6.
Sahu
A
,
Gera
P
,
Malik
A
,
Nair
S
,
Chaturvedi
P
,
Murali Krishna
C
.
Raman exfoliative cytology for prognosis prediction in oral cancers: a proof of concept study
.
J Biophotonics
.
2019
;
12
(
8
):
e201800334
.
7.
Idrees
M
,
Farah
CS
,
Sloan
P
,
Kujan
O
.
Oral brush biopsy using liquid-based cytology is a reliable tool for oral cancer screening: a cost-utility analysis: oral brush biopsy for oral cancer screening
.
Cancer Cytopathol
.
2022
;
130
(
9
):
740
8
.
8.
Salgueiro
AP
,
Martelli
FT
,
D’Ávila
SR
,
Milnikel
TR
,
Koehler-Santos
P
,
Maraschin
BJ
, et al
.
Cytopathological tests for early detection of oral carcinogenesis
.
Eur J Cancer Prev
.
2020
;
29
(
1
):
73
9
.
9.
Paiva
RL
,
De Figueiredo
MAZ
,
Cherubini
K
,
Da Silva
VD
,
Salum
FG
.
Cytological screening model of normal oral mucosa exposed to carcinogens: a pilot study
.
Acta Cytol
.
2022
;
66
(
2
):
114
23
.
10.
Greenberg
MS
.
The “brush” controversy
.
Oral Surg Oral Med Oral Pathol Oral Radiol Endod
.
2002
;
93
(
3
):
217
8
.
11.
Sunny
S
,
Baby
A
,
James
BL
,
Balaji
D
,
Aparna
NV
,
Rana
MH
, et al
.
A smart tele-cytology point-of-care platform for oral cancer screening
.
PLoS One
.
2019
;
14
(
11
):
e0224885
.
12.
Srinivasan Rajsri
K
,
K Durab
S
,
A Varghese
I
,
Vigneswaran
NT
,
T McDevitt
J
,
Kerr
AR
.
A brief review of cytology in dentistry
.
Br Dent J
.
2024
;
236
(
4
):
329
36
.
13.
Shaila
M
,
Shetty
P
,
Pai
P
.
A new approach to exfoliative cytology: a comparative cytomorphometric study
.
Indian J Cancer
.
2016
;
53
(
1
):
193
8
.
14.
Verma
R
,
Singh
A
,
Badni
M
,
Chandra
A
,
Gupta
S
,
Verma
R
.
Evaluation of exfoliative cytology in the diagnosis of oral premalignant and malignant lesions: a cytomorphometric analysis
.
Dent Res J
.
2015
;
12
(
1
):
83
8
.
15.
Daroit
NB
,
Salgueiro
AP
,
Maito
FLDM
,
Visioli
F
,
Rados
PV
.
The use of cytopathology to identify disturbances in oral squamous cell carcinoma at early stage: a case report
.
Diagn Cytopathol
.
2018
;
46
(
12
):
1068
72
.
16.
Lepper
TW
,
Ferreira Prigol
R
,
Ferrares Espinosa
AL
,
Guedes
IC
,
Maciel Rönnau
M
,
Daroit
NB
, et al
.
Oral cancer screening using cytopathology: an advanced proposal with the Bethesda classification
.
Cytopathology
.
2025
;
36
(
1
):
41
9
.
17.
Thomas
TM
,
Ramesh
M
,
Sekar
B
.
Study of exfoliated cells in the buccal mucosa of smokers and non-smokers-a cytological comparative study
.
Int J Curr Adv Res
.
2017
;
6
(
8
):
5010
4
.
18.
Suzuki
T
,
Tanaka
Y
,
Sato
K
,
Katakura
A
.
Evaluating the Bethesda system for liquid-based oral cytology
.
Jpn J Oral Diag/Oral Med
.
2016
;
29
(
1
):
28
35
.
19.
Raman
RK
,
Kamboj
M
,
Narwal
A
.
The diagnostic role of methyl green-pyronin y staining in oral leukoplakia and oral squamous cell carcinoma: an exfoliative cytology-based cytomorphometric analysis
.
Acta Cytol
.
2019
;
63
(
5
):
401
10
.
20.
Sukegawa
S
,
Tanaka
F
,
Nakano
K
,
Hara
T
,
Yoshii
K
,
Yamashita
K
, et al
.
Effective deep learning for oral exfoliative cytology classification
.
Sci Rep
.
2022
;
12
(
1
):
13281
.
21.
Sornapudi
S
,
Brown
GT
,
Xue
Z
,
Long
R
,
Allen
L
,
Antani
S
.
Comparing deep learning models for multi-cell classification in liquid-based cervical cytology image
.
AMIA Annu Symp Proc
.
2019
;
2019
:
820
7
.
22.
Chan
HP
,
Samala
RK
,
Hadjiiski
LM
,
Zhou
C
.
Deep learning in medical image analysis
.
Advances in experimental medicine and biology
.
Springer
;
2020
; p.
3
21
.
23.
Joel
MZ
,
Umrao
S
,
Chang
E
,
Choi
R
,
Yang
DX
,
Duncan
JS
, et al
.
Using adversarial images to assess the robustness of deep learning models trained on diagnostic images in oncology
.
JCO Clin Cancer Inform
.
2022
;
6
:
2100170
.
24.
Islam
A
,
Banerjee
A
,
Wati
SM
,
Banerjee
S
,
Shrivastava
D
,
Srivastava
KC
.
Utilizing artificial intelligence application for diagnosis of oral lesions and assisting young oral histopathologist in deriving diagnosis from provided features: a pilot study
.
J Pharm BioAllied Sci
.
2024
;
16
(
Suppl 2
):
S1136
9
.
25.
Rönnau
MM
,
Lepper
TW
,
Guedes
IC
,
Espinosa
ALF
,
Rados
PV
,
Oliveira
MM
.
Automatic segmentation and classification of Papanicolaou-stained cells and dataset for oral cancer detection
.
Comput Biol Med
.
2024
;
180
:
108967
.
26.
WHO Classification of Tumours Editorial Board
.
Head and neck tumours
. 5th ed.
Lyon
:
IARC Press
;
2022
.
27.
Burzlaff
JB
,
Bohrer
PL
,
Paiva
RL
,
Visioli
F
,
Sant’Ana Filho
M
,
Da Silva
VD
, et al
.
Exposure to alcohol or tobacco affects the pattern of maturation in oral mucosal cells: a cytohistological study
.
Cytopathology
.
2007
;
18
(
6
):
367
75
.
28.
Huang
G
,
Liu
Z
,
Van Der Maaten
L
,
Weinberger
KQ
.
Densely connected convolutional networks
. Proceedings of the IEEE conference on computer vision and pattern recognition;
2017
. p.
4700
8
.
29.
Chaurasia
A
,
Culurciello
E
.
Linknet: exploiting encoder representations for efficient semantic segmentation
.
2017 IEEE visual communications and image processing, VCIP IEEE
;
2017
. p.
1
4
.
30.
Wang
T
,
Wang
L
,
Yang
H
,
Lu
H
,
Zhang
J
,
Li
N
, et al
.
Development and validation of nomogram for prediction of malignant transformation in oral leukoplakia: a large-scale cohort study
.
J Oral Pathol Med
.
2019
;
48
(
6
):
491
8
.
31.
Cai
X
,
Zhang
J
,
Han
Y
,
Tang
Q
,
Zhang
H
,
Li
T
.
Development and validation of a nomogram prediction model for malignant transformation of oral potentially malignant disorders
.
Oral Oncol
.
2021
;
123
:
105619
.
You do not currently have access to this content.