Introduction: PD-L1 expression is the most widely used predictive marker for immune checkpoint inhibitor (ICI) therapy in patients with lung adenocarcinoma. However, the current understanding of the association between PD-L1 expression and treatment response is suboptimal. A significant percentage of patients have only a cytological specimen available for clinical management. Therefore, it is relevant to examine the impact of molecular features on PD-L1 expression in cytological samples and how it might correlate with a therapeutic response. Methods: We evaluated patients diagnosed with adenocarcinoma of the lung who had both in-house targeted next-generation sequencing analysis and paired PD-L1 (22C3) immunohistochemical staining performed on the same cell blocks. We explored the association between molecular features and PD-L1 expression. In patients who underwent ICIs therapy, we assessed how a specific gene mutation impacted a therapeutic response. Results: 145 patients with lung adenocarcinoma were included in this study. PD-L1-high expression was found to be more common in pleural fluid than in other sample sites. Regional lymph node samples showed a higher proportion of PD-L1-high expression (29%) compared with lung samples (6%). The predictive value of PD-L1 expression was retained in cytological samples. Mutations in KRAS were also associated with a PD-L1-high expression. However, tumors with TP53 or KRAS mutations showed a lower therapy response rate regardless of the PD-L1 expression. Conclusion: Cytological samples maintain a predictive value for PD-L1 expression in patients with lung adenocarcinoma as regards the benefit of ICI treatment. Specific molecular alterations additionally impact PD-L1 expression and its predictive value.

1.
Reck
M
,
Rodriguez-Abreu
D
,
Robinson
AG
,
Hui
R
,
Csőszi
T
,
Fulop
A
.
Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer
.
N Engl J Med
.
2016
;
375
(
19
):
1823
33
.
2.
Mok
TSK
,
Wu
YL
,
Kudaba
I
,
Kowalski
DM
,
Cho
BC
,
Turna
HZ
.
Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial
.
Lancet
.
2019
;
393
(
10183
):
1819
30
.
3.
Garon
EB
,
Rizvi
NA
,
Hui
R
,
Leighl
N
,
Balmanoukian
AS
,
Eder
JP
.
Pembrolizumab for the treatment of non-small-cell lung cancer
.
N Engl J Med
.
2015
;
372
(
21
):
2018
28
.
4.
Schoenfeld
AJ
,
Rizvi
H
,
Bandlamudi
C
,
Sauter
JL
,
Travis
WD
,
Rekhtman
N
.
Clinical and molecular correlates of PD-L1 expression in patients with lung adenocarcinomas
.
Ann Oncol
.
2020
;
31
(
5
):
599
608
.
5.
Boothman
AM
,
Scott
M
,
Ratcliffe
M
,
Whiteley
J
,
Dennis
PA
,
Wadsworth
C
.
Impact of patient characteristics, prior therapy, and sample type on tumor cell programmed cell death ligand 1 expression in patients with advanced NSCLC screened for the ATLANTIC study
.
J Thorac Oncol
.
2019
;
14
(
8
):
1390
9
.
6.
Skoulidis
F
,
Goldberg
ME
,
Greenawalt
DM
,
Hellmann
MD
,
Awad
MM
,
Gainor
JF
.
STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma
.
Cancer Discov
.
2018
;
8
(
7
):
822
35
.
7.
Hastings
K
,
Yu
HA
,
Wei
W
,
Sanchez-Vega
F
,
DeVeaux
M
,
Choi
J
.
EGFR mutation subtypes and response to immune checkpoint blockade treatment in non-small-cell lung cancer
.
Ann Oncol
.
2019
;
30
(
8
):
1311
20
.
8.
Kerr
KM
,
Thunnissen
E
,
Dafni
U
,
Finn
SP
,
Bubendorf
L
,
Soltermann
A
.
A retrospective cohort study of PD-L1 prevalence, molecular associations and clinical outcomes in patients with NSCLC: results from the European Thoracic Oncology Platform (ETOP) Lungscape Project
.
Lung Cancer
.
2019
;
131
:
95
103
.
9.
Tejerina
E
,
Garca Tobar
L
,
Echeveste
JI
,
de Andrea
CE
,
Vigliar
E
,
Lozano
MD
.
PD-L1 in cytological samples: a Review and a practical approach
.
Front Med
.
2021
;
8
:
668612
.
10.
Munari
E
,
Zamboni
G
,
Lunardi
G
,
Marchionni
L
,
Marconi
M
,
Sommaggio
M
.
PD-L1 expression heterogeneity in non-small cell lung cancer: defining criteria for harmonization between biopsy specimens and whole sections
.
J Thorac Oncol
.
2018
;
13
(
8
):
1113
20
.
11.
Gniadek
TJ
,
Li
QK
,
Tully
E
,
Chatterjee
S
,
Nimmagadda
S
,
Gabrielson
E
.
Heterogeneous expression of PD-L1 in pulmonary squamous cell carcinoma and adenocarcinoma: implications for assessment by small biopsy
.
Mod Pathol
.
2017
;
30
(
4
):
530
8
.
12.
Mansour
MSI
,
Lindquist
KE
,
Seidal
T
,
Mager
U
,
Mohlin
R
,
Tran
L
.
PD-L1 testing in cytological non-small cell lung cancer specimens: a comparison with biopsies and Review of the literature
.
Acta Cytol
.
2021
;
65
(
6
):
501
9
.
13.
Skov
BG
,
Skov
T
.
Paired comparison of PD-L1 expression on cytologic and histologic specimens from malignancies in the lung assessed with PD-L1 IHC 28-8pharmDx and PD-L1 IHC 22C3pharmDx
.
Appl Immunohistochem Mol Morphol
.
2017
;
25
(
7
):
453
9
.
14.
Ilie
M
,
Juco
J
,
Huang
L
,
Hofman
V
,
Khambata-Ford
S
,
Hofman
P
.
Use of the 22C3 anti-programmed death-ligand 1 antibody to determine programmed death-ligand 1 expression in cytology samples obtained from non-small cell lung cancer patients
.
Cancer Cytopathol
.
2018
;
126
(
4
):
264
74
.
15.
Noll
B
,
Wang
WL
,
Gong
Y
,
Zhao
J
,
Kalhor
N
,
Prieto
V
.
Programmed death ligand 1 testing in non-small cell lung carcinoma cytology cell block and aspirate smear preparations
.
Cancer Cytopathol
.
2018
;
126
(
5
):
342
52
.
16.
Russell-Goldman
E
,
Kravets
S
,
Dahlberg
SE
,
Sholl
LM
,
Vivero
M
.
Cytologic-histologic correlation of programmed death-ligand 1 immunohistochemistry in lung carcinomas
.
Cancer Cytopathol
.
2018
;
126
(
4
):
253
63
.
17.
Layfield
LJ
,
Roy-Chowdhuri
S
,
Baloch
Z
,
Ehya
H
,
Geisinger
K
,
Hsiao
SJ
.
Utilization of ancillary studies in the cytologic diagnosis of respiratory lesions: the papanicolaou society of cytopathology consensus recommendations for respiratory cytology
.
Diagn Cytopathol
.
2016
;
44
(
12
):
1000
9
.
18.
Pisapia
P
,
Pepe
F
,
Iaccarino
A
,
Sgariglia
R
,
Nacchio
M
,
Conticelli
F
.
Next generation sequencing in cytopathology: focus on non-small cell lung cancer
.
Front Med
.
2021
;
8
:
633923
.
19.
Aisner
DL
,
Sams
SB
.
The role of cytology specimens in molecular testing of solid tumors: techniques, limitations, and opportunities
.
Diagn Cytopathol
.
2012
;
40
(
6
):
511
24
.
20.
Wang
H
,
Agulnik
J
,
Kasymjanova
G
,
Wang
A
,
Jimenez
P
,
Cohen
V
.
Cytology cell blocks are suitable for immunohistochemical testing for PD-L1 in lung cancer
.
Ann Oncol
.
2018
;
29
(
6
):
1417
22
.
21.
Cree
IA
,
Deans
Z
,
Ligtenberg
MJ
,
Normanno
N
,
Edsjo
A
,
Rouleau
E
.
Guidance for laboratories performing molecular pathology for cancer patients
.
J Clin Pathol
.
2014
;
67
(
11
):
923
31
.
22.
Bellevicine
C
,
Malapelle
U
,
Vigliar
E
,
Pisapia
P
,
Vita
G
,
Troncone
G
.
How to prepare cytological samples for molecular testing
.
J Clin Pathol
.
2017
;
70
(
10
):
819
26
.
23.
Hwang
KE
,
Kim
HR
.
Response evaluation of chemotherapy for lung cancer
.
Tuberc Respir Dis
.
2017
;
80
(
2
):
136
42
.
24.
Morlote
DM
,
Harada
S
,
Batista
D
,
Gordetsky
J
,
Rais-Bahrami
S
.
Clear cell papillary renal cell carcinoma: molecular profile and virtual karyotype
.
Hum Pathol
.
2019
;
91
:
52
60
.
25.
Morlote
D
,
Janowski
KM
,
Siniard
RC
,
Guo
RJ
,
Winokur
T
,
DeFrank
G
.
Effects of improved DNA integrity by punch from tissue blocks as compared to pinpoint extraction from unstained slides on next-generation sequencing quality metrics
.
Am J Clin Pathol
.
2019
;
152
(
1
):
27
35
.
26.
Harada
S
,
Agosto-Arroyo
E
,
Levesque
JA
,
Alston
E
,
Janowski
KM
,
Coshatt
GM
.
Poor cell block adequacy rate for molecular testing improved with the addition of Diff-Quik-stained smears: need for better cell block processing
.
Cancer Cytopathol
.
2015
;
123
(
8
):
480
7
.
27.
Kim
S
,
Koh
J
,
Kwon
D
,
Keam
B
,
Go
H
,
Kim
YA
.
Comparative analysis of PD-L1 expression between primary and metastatic pulmonary adenocarcinomas
.
Eur J Cancer
.
2017
;
75
:
141
9
.
28.
Mansfield
AS
,
Aubry
MC
,
Moser
JC
,
Harrington
SM
,
Dronca
RS
,
Park
SS
.
Temporal and spatial discordance of programmed cell death-ligand 1 expression and lymphocyte tumor infiltration between paired primary lesions and brain metastases in lung cancer
.
Ann Oncol
.
2016
;
27
(
10
):
1953
8
.
29.
Lloyd
IE
,
Zhou
W
,
Witt
BL
,
Chadwick
BE
.
Characterization of PD-L1 immunohistochemical expression in cell blocks with different specimen fixation and processing methods
.
Appl Immunohistochem Mol Morphol
.
2019
;
27
(
2
):
107
13
.
30.
Gruchy
JR
,
Barnes
PJ
,
Dakin Hache
KA
.
CytoLyt® fixation and decalcification pretreatments alter antigenicity in normal tissues compared with standard formalin fixation
.
Appl Immunohistochem Mol Morphol
.
2015
;
23
(
4
):
297
302
.
31.
Herbst
RS
,
Baas
P
,
Kim
DW
,
Felip
E
,
Perez-Gracia
JL
,
Han
JY
.
Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial
.
Lancet
.
2016
;
387
(
10027
):
1540
50
.
32.
Antonia
SJ
,
Villegas
A
,
Daniel
D
,
Vicente
D
,
Murakami
S
,
Hui
R
.
Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer
.
N Engl J Med
.
2017
;
377
(
20
):
1919
29
.
33.
Antonia
SJ
,
Villegas
A
,
Daniel
D
,
Vicente
D
,
Murakami
S
,
Hui
R
.
Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC
.
N Engl J Med
.
2018
;
379
(
24
):
2342
50
.
34.
Brahmer
J
,
Reckamp
KL
,
Baas
P
,
Crino
L
,
Eberhardt
WE
,
Poddubskaya
E
.
Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer
.
N Engl J Med
.
2015
;
373
(
2
):
123
35
.
35.
Borghaei
H
,
Paz-Ares
L
,
Horn
L
,
Spigel
DR
,
Steins
M
,
Ready
NE
.
Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer
.
N Engl J Med
.
2015
;
373
(
17
):
1627
39
.
36.
Rittmeyer
A
,
Barlesi
F
,
Waterkamp
D
,
Park
K
,
Ciardiello
F
,
von Pawel
J
.
Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial
.
Lancet
.
2017
;
389
(
10066
):
255
65
.
37.
Li
D
,
Zhu
X
,
Wang
H
,
Li
N
.
Association between PD-L1 expression and driven gene status in NSCLC: a meta-analysis
.
Eur J Surg Oncol
.
2017
;
43
(
7
):
1372
9
.
38.
Langer
CJ
,
Gadgeel
SM
,
Borghaei
H
,
Papadimitrakopoulou
VA
,
Patnaik
A
,
Powell
SF
.
Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study
.
Lancet Oncol
.
2016
;
17
(
11
):
1497
508
.
39.
Jiang
L
,
Su
X
,
Zhang
T
,
Yin
X
,
Zhang
M
,
Fu
H
.
PD-L1 expression and its relationship with oncogenic drivers in non-small cell lung cancer (NSCLC)
.
Oncotarget
.
2017
;
8
(
16
):
26845
57
.
40.
Rangachari
D
,
VanderLaan
PA
,
Shea
M
,
Le
X
,
Huberman
MS
,
Kobayashi
SS
.
Correlation between classic driver oncogene mutations in EGFR, ALK, or ROS1 and 22C3-PD-L1 ≥50% expression in lung adenocarcinoma
.
J Thorac Oncol
.
2017
;
12
(
5
):
878
83
.
41.
Chapman
AM
,
Sun
KY
,
Ruestow
P
,
Cowan
DM
,
Madl
AK
.
Lung cancer mutation profile of EGFR, ALK, and KRAS: meta-analysis and comparison of never and ever smokers
.
Lung Cancer
.
2016
;
102
:
122
34
.
42.
Soda
M
,
Choi
YL
,
Enomoto
M
,
Takada
S
,
Yamashita
Y
,
Ishikawa
S
.
Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer
.
Nature
.
2007
;
448
(
7153
):
561
6
.
You do not currently have access to this content.