Introduction: Urine cytology plays an important role in diagnosing urothelial carcinoma (UC). However, urine cytology interpretation is subjective and difficult. Morphogo (ALAB, Boston, MA, USA), equipped with automatic acquisition and scanning, optical focusing, and automatic classification with convolutional neural network has been developed for bone marrow aspirate smear analysis of hematopoietic diseases. The goal of this preliminary study was to determine the feasibility of developing a machine learning algorithm on Morphogo for identifying abnormal urothelial cells in urine cytology slides. Methods: Thirty-seven achieved abnormal urine cytology slides from cases with the diagnosis of atypical urothelial cells and above (suspicions or positive for UC) were obtained from 1 hospital. A pathologist (J.R.) reviewed the slides and manually selected and annotated representative cells to feed into Morphogo with following categories: benign (urothelial cells, squamous cells, degenerated cells, and inflammatory cells), atypical cells, and suspicious cells. Initial validation of the algorithm was performed on a subset of the original 37 cases. Urine samples from additional 12 unknown cases with various histological diagnoses (6 cases of high-grade urothelial carcinoma (HGUC), 1 case of low-grade urothelial carcinoma (LGUC), 1 case of prostate adenocarcinoma, 1 case of renal cell carcinoma, and 4 cases of non-neoplastic conditions) were collected from another hospital for initial blind testing. Results: A total of 1,910 benign and 1,978 abnormal (atypical and suspicious) cells from 37 slides were annotated for developing and training of the algorithm. This algorithm was validated on 27 slides that resulted in identification of at least 1 abnormal cell per slide, with a total of 200 abnormal cells, and an average of 7.4 cells per slide. Of the 12 unknown cases tested, the original cytology was positive for tumor cells in 2 HGUC samples. Morphogo was abnormal (atypical or suspicious) for 6 samples from patients with UC, including one with LGUC and one with prostate adenocarcinoma. Conclusion: Morphogo machine learning algorithm is capable of identifying abnormal urothelial cells. Further validation studies with a larger number of urine samples will be needed to determine if it can be used to assist the cytological diagnosis of UC.

Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.