Lymph node (LN) fine-needle cytology (FNC) coupled with flow cytometry immunophenotyping provides relevant information for the diagnosis of non-Hodgkin lymphoma (NHL). Numerous studies have shown FNC samples to be suitable for different molecular procedures; in this review, some of the molecular procedures most commonly employed for NHL are briefly described and evaluated in this perspective. Fluorescence in situ hybridization and chromogenic in situ hybridization are briefly described. Polymerase chain reaction (PCR)-based assays are used to identify and quantify mutations and translocations, namely immunoglobulin (IGH) and T-cell receptor rearrangements by clonality testing and IGVH somatic hypermutations either by Sanger sequencing, single-strand conformational polymorphisms or RT-PCR strategies. High-throughput technologies (HTT) encompass numerous and different diagnostic tools that share the capacity of multiple molecular investigation and sample processing in a fast and reproducible manner. HTT includes gene expression profiling, comparative genomic hybridization, single-nucleotide polymorphism arrays and next-generation sequencing technologies. A brief description of these tools and their potential application to LN FNC is reported. The challenge for FNC will be to achieve new knowledge and apply new technologies to FNC, exploiting its own basic qualities.

1.
van Dongen JJM, Lhermitte L, Bottcher S, Almeida J, van der Velden VHJ, Flores-Montero J, Rawstron A, Asnafi V, Lécrevisse Q, Lucio P, Mejstrikova E, Szczepanski T, Kalina T, de Tute R, Bruggemann M, Sedek L, Cullen M, Langerak AW, Mendonca A, Macintyre E, Martin-Ayuso M, Hrusak O, Vidriales MB, Orfao A; EuroFlow Consortium (EU-FP6, LSHB-CT-2006-018708): EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 2012;26:1908-1975.
2.
Matsushita H, Nakamura N, Tanaka Y, et al: Clinical and pathological features of B-cell non-Hodgkin lymphomas lacking the surface expression of immunoglobulin light chains. Clin Chem Lab Med 2012;50:1665-1670.
3.
Zeppa P, Vigliar E, Cozzolino I, et al: Fine needle aspiration cytology and flow cytometry immunophenotyping of non-Hodgkin lymphoma: can we do better? Cytopathology 2010;21:300-310.
4.
Maroto A, Martinez M, Martinez MA, de Agustin P, Rodriguez-Peralto JL: Comparative analysis of immunoglobulin polymerase chain reaction and flow cytometry in fine needle aspiration biopsy differential diagnosis of non-Hodgkin B-cell lymphoid malignancies. Diagn Cytopathol 2009;37:647-653.
5.
Bangerter M, Brudler O, Heinrich B, Griesshamnuer M: Fine needle aspiration cytology and flow cytometry in the diagnosis and subclassification of non-Hodgkin's lymphoma based on the World Health Organization classification. Acta Cytol 2007;51:390-398.
6.
Schmid S, Tinguely M, Cione P, Moch H, Bode B: Flow cytometry as an accurate tool to complement fine needle aspiration cytology in the diagnosis of low grade malignant lymphomas. Cytopathology 2011;22:397-406.
7.
Saieg MA, Geddie WR, Boerner SL, et al: EZH2 and CD97B mutational status over time in B-cell non-Hodgkin lymphomas detected by high-throughput sequencing using minimal samples. Cancer Cytopathol 2013;121:377-386.
8.
da Cunha Santos G, Liu N, Tsao MS, et al: Detection of EGFR and KRAS mutations in fine-needle aspirates stored on Whatman FTA cards: is this the tool for biobanking cytological samples in the molecular era? Cancer Cytopathol 2010;118:450-456.
9.
Ochs RC, Bagg A: Molecular genetic characterization of lymphoma: application to cytology diagnosis. Diagn Cytopathol 2012;40:542-555.
10.
Zeppa P, Sosa Fernandez LV, Cozzolino I, Ronga V, Genesio R, Salatiello M, Picardi M, Malapelle U, Troncone G, Vigliar E: Immunoglobulin heavy-chain fluorescence in situ hybridization-chromogenic in situ hybridization DNA probe split signal in the clonality assessment of lymphoproliferative processes on cytological samples. Cancer Cytopathol 2012;120:390-400.
11.
da Cunha Santos G, Ko HM, Geddie WR, Boerner SL, Lai SW, Have C, Kamel-Reid S, Bailey D: Targeted use of fluorescence in situ hybridization (FISH) in cytospin preparations: results of 298 fine needle aspirates of B-cell non-Hodgkin lymphoma. Cancer Cytopathol 2010;118:250-258.
12.
Zhang S, Abreo F, Lowery-Nordberg M, Veillon DM, Cotelingam JD: The role of fluorescence in situ hybridization and polymerase chain reaction in the diagnosis and classification of lymphoproliferative disorders on fine-needle aspiration. Cancer Cytopathol 2010;118:105-112.
13.
Monaco SE, Teot LA, Felgar RE, Surti U, Cai G: Fluorescence in situ hybridization studies on direct smears: an approach to enhance the fine-needle aspiration biopsy diagnosis of B-cell non-Hodgkin lymphomas. Cancer Cytopathol 2009;117:338-348.
14.
Caraway NP, Thomas E, Khanna A, Payne L, Zhang HZ, Lin E, Keating MJ, Katz RL: Chromosomal abnormalities detected by multicolor fluorescence in situ hybridization in fine-needle aspirates from patients with small lymphocytic lymphoma are useful for predicting survival. Cancer Cytopathol 2008;114:315-322.
15.
Bagg A: Immunoglobulin and T-cell receptor gene rearrangements: minding your B's and T's in assessing lineage and clonality in neoplastic lymphoproliferative disorders. J Mol Diagn 2006;8:426-429; quiz 526-527.
16.
Richmond J, Bryant R, Trotman W, Beatty B, Lunde J: FISH detection of t(14;18) in follicular lymphoma on Papanicolaou-stained archival cytology slides. Cancer 2006;108:198-204.
17.
Safley AM, Buckley PJ, Creager AJ, et al: The value of fluorescence in situ hybridization and polymerase chain reaction in the diagnosis of B-cell non-Hodgkin lymphoma by fine-needle aspiration. Arch Pathol Lab Med 2004;128:1395-1403.
18.
Zeppa P, Marino G, Troncone G, et al: Fine-needle cytology and flow cytometry immunophenotyping and subclassification of non-Hodgkin lymphoma: a critical review of 307 cases with technical suggestions. Cancer Cytopathol 2004;102:55-65.
19.
Salaverria I, Zettl A, Bea S, et al: Specific secondary genetic alterations in mantle cell lymphoma provide prognostic information independent of the gene expression-based proliferation signature. J Clin Oncol 2007;25:1216-1222.
20.
Ko HM, Geddie WR, Boerner SL, Rogalla P, da Cunha Santos G: Cytomorphological and clinicopathological spectrum of pulmonary marginal zone lymphoma: the utility of immunophenotyping, PCR and FISH studies. Cytopathology 2014;25:250-258.
21.
Elkins CT, Wakely PE Jr: Cytopathology of ‘double-hit' non-Hodgkin lymphoma. Cancer Cytopathol 2011;119:263-271.
22.
Bentz JS, Rowe LR, Anderson SR, Gupta PK, McGrath CM: Rapid detection of the t(11;14) translocation in mantle cell lymphoma by interphase fluorescence in situ hybridization on archival cytopathologic material. Cancer 2004;102:124-131.
23.
Gong Y, Caraway N, Gu J, Zaidi T, Fernandez R, Sun X, Huh YO, Katz RL: Evaluation of interphase fluorescence in situ hybridization for the t(14;18)(q32;q21) translocation in the diagnosis of follicular lymphoma on fine-needle aspirates: a comparison with flow cytometry immunophenotyping. Cancer 2003;99:385-393.
24.
Shin HJ, Thorson P, Gu J, Katz RL: Detection of a subset of CD30+ anaplastic large cell lymphoma by interphase fluorescence in situ hybridization. Diagn Cytopathol 2003;29:61-66.
25.
Tzankov A, Schneider A, Hoeller S, Dirnhofer S: Prognostic importance of BCL6 rearrangements in diffuse large B-cell lymphoma with respect to Bcl6 protein levels and primary lymphoma site. Hum Pathol 2009;40:1055-1056; author reply 1056.
26.
Baro C, Espinet B, Salido M, et al: Cryptic IGH/BCL2 rearrangements with variant FISH patterns in follicular lymphoma. Leuk Res 2011;35:256-259.
27.
Chen YH, Gao J, Fan G, Peterson LC: Nuclear expression of sox11 is highly associated with mantle cell lymphoma but is independent of t(11;14)(q13;q32) in non-mantle cell B-cell neoplasms. Mod Pathol 2010;23:105-112.
28.
Streubel B, Vinatzer U, Lamprecht A, Raderer M, Chott A: T(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma. Leukemia 2005;19:652-658.
29.
Katzenberger T, Kienle D, Stilgenbauer S, et al: Delineation of distinct tumour profiles in mantle cell lymphoma by detailed cytogenetic, interphase genetic and morphological analysis. Br J Haematol 2008;142:538-550.
30.
Hallek M, Cheson BD, Catovsky D, et al: Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 2008;111:5446-5456.
31.
Sáez A, Andreu FJ, Seguí MA, Baré ML, Fernández S, Dinarés C, Rey M: HER-2 gene amplification by chromogenic in situ hybridisation (CISH) compared with fluorescence in situ hybridisation (FISH) in breast cancer - a study of two hundred cases. Breast 2006;15:519-527.
32.
Cavazzini F, Hernandez JA, Gozzetti A, et al: Chromosome 14q32 translocations involving the immunoglobulin heavy chain locus in chronic lymphocytic leukaemia identify a disease subset with poor prognosis. Br J Haematol 2008;142:529-537.
33.
Baro C, Salido M, Domingo A, et al: Translocation t(9;14)(p13;q32) in cases of splenic marginal zone lymphoma. Haematologica 2006;91:1289-1291.
34.
Hwang Y, Lee JY, Mun YC, Seong CM, Chung WS, Huh J: Various patterns of IgH deletion identified by FISH using combined IgH and IgH/CCND1 probes in multiple myeloma and chronic lymphocytic leukemia. Int J Lab Hematol 2011;33:299-304.
35.
da Cunha Santos G, Ko HM, Saieg MA, Boerner SL, Lai SW, Bailey D, Geddie WR: Cytomorphologic findings of B-cell lymphomas with concurrent IGH/BCL2 and MYC rearrangements (dual-translocation lymphomas). Cancer Cytopathol 2011;119:254-262.
36.
Peluso AL, Cozzolino I, Bottiglieri A, Lucchese L, Di Crescenzo RM, Langella M, Selleri C, Zeppa P: Immunoglobulin heavy and light chains and T-cell receptor beta and gamma chains PCR assessment on cytological samples: a study comparing FTA cards and cryopreserved lymph node fine-needle cytology. Cytopathology 2016, in press.
37.
Langerak AW, Groenen PJTA, Brüggemann M, et al: EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations. Leukemia 2012;26:2159-2172.
38.
Saieg MA, Geddie WR, Boerner SL, et al: The use of FTA cards for preserving unfixed cytological material for high-throughput molecular analysis. Cancer Cytopathol 2012;120:206-214.
39.
Berget E, Helgeland L, Molven A, Vintermyr OK: Detection of clonality in follicular lymphoma using formalin-fixed, paraffin-embedded tissue samples and BIOMED-2 immunoglobulin primers. J Clin Pathol 2011;64:37-41.
40.
Zeppa P, Cozzolino I, Peluso AL, et al: Flow cytometry and molecular assessment of lymphoid infiltrate in fine-needle cytology samples of Hashimoto thyroiditis. Cancer Cytopathol 2009;117:174-184.
41.
van Krieken JHJM, Langerak AW, Macintyre EA, Kneba M, Smith JL, Garcia Sanz R, et al: Improved reliability of lymphoma diagnostics via PCR-based clonality testing: report of the BIOMED-2 Concerted Action BHM4-CT98-3936. Leukemia 2007;21:201-206.
42.
Langerak AW, Molina TJ, Lavender FL, et al: Polymerase chain reaction based clonality testing in tissue samples with reactive lymphoproliferations: usefulness and pitfalls - a report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2007;21:222-229.
43.
van Dongen JJ, Langerak AW, Bruggemann M, et al: Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003;17:2257-2317.
44.
Grosso LE, Collins BT: DNA polymerase chain reaction using fine needle aspiration biopsy smears to evaluate non-Hodgkin's lymphoma. Acta Cytol 1999;43:837-841.
45.
Rambaldi A, Carlotti E, Oldani E, Della Starza I, Baccarani M, Cortelazzo S, Lauria F, Arcaini L, Morra E, Pulsoni A, Rigacci L, Rupolo M, Zaja F, Zinzani PL, Barbui T, Foa R: Quantitative PCR of bone marrow BCL2/IgH+ cells at diagnosis predicts treatment response and long-term outcome in follicular non-Hodgkin lymphoma. Blood 2005;105:3428-3433.
46.
Dik WA, Pike-Overzet K, Weerkamp F, De Ridder D, De Haas EF, Baert MRM, et al: New insights on human T-cell development by quantitative T-cell receptor gene rearrangement studies and gene expression profiling. J Exp Med 2005;201:1715-1723.
47.
Ståhlberg A, Aman P, Ridell B, Mostad P, Kubista M: Quantitative real-time PCR method for detection of B-lymphocyte monoclonality by comparison of kappa and lambda immunoglobulin light chain expression. Clin Chem 2003;49:51-59.
48.
Patel KP, Pan Q, Wang Y, Maitta RW, Du J, Xue X, et al: Comparison of BIOMED-2 versus laboratory-developed polymerase chain reaction assays for detecting T-cell receptor-gamma gene rearrangements. J Mol Diagn 2010;12:226-237.
49.
Evans PAS, Pott C, Groenen PJTA, Salles G, Davi F, Berger F, et al: Significantly improved PCR-based clonality testing in B-cell malignancies by use of multiple immunoglobulin gene targets: report of the BIOMED-2 Concerted Action BHM4-CT98-3936. Leukemia 2007;21:207-214.
50.
McClure RF, Kaur P, Pagel E, Ouillette PD, Holtegaard CE, Treptow CL, et al: Validation of immunoglobulin gene rearrangement detection by PCR using commercially available BIOMED-2 primers. Leukemia 2006;20:176-179.
51.
van Zelm MC, van der Burg M, de Ridder D, Barendregt BH, de Haas EF, Reinders MJ, et al: Ig gene rearrangement steps are initiated in early human precursor B cell subsets and correlate with specific transcription factor expression. J Immunol 2005;175:5912-5922.
52.
Tembhare P, Yuan CM, Morris JC, Janik JE, Filie AC, Stetler-Stevenson M: Flow cytometric immunophenotypic assessment of T-cell clonality by vβ repertoire analysis in fine-needle aspirates and cerebrospinal fluid. Am J Clin Pathol 2012;137:220-226.
53.
Venkatraman L, Catherwood MA, Patterson A, Lioe TF, McCluggage WG, Anderson NH: Role of polymerase chain reaction and immunocytochemistry in the cytological assessment of lymphoid proliferations. J Clin Pathol 2006;59:1160-1165.
54.
Cozzolino I, Vigliar E, Todaro P, Peluso AL, Picardi M, Sosa Fernandez LV, Mignogna MD, Tuccari G, Selleri C, Zeppa P: Fine needle aspiration cytology of lymphoproliferative lesions of the oral cavity. Cytopathol 2014;25:241-249.
55.
Mayall F, Johnson S: Immunoflow cytometry compared with PCR for the identification of clonality in FNAs of T-cell-rich B-cell lymphomas. Cytopathology 2007;18:117-119.
56.
Davidson B, Risberg B, Berner A, Smeland EB, Torlakovic E: Evaluation of lymphoid cell populations in cytology specimens using flow cytometry and polymerase chain reaction. Diagn Mol Pathol 1999;8:183-188.
57.
Vigliar S, Cozzolino I, Picardi M, et al: Lymph node fine-needle cytology in the staging and follow-up of cutaneous lymphomas. BMC Cancer 2014;14:8-18.
58.
Bardwell PD, Martin A, Scharff MD: Mutation detection of immunoglobulin V-regions by DHPLC. J Immunol Methods 2002;266:165-173.
59.
Xiao W, Oefner PJ: Denaturing high-performance liquid chromatography: a review. Hum Mutat 2001;17:439-474.
60.
Campo E: Whole genome profiling and other high throughput technologies in lymphoid neoplasms - current contributions and future hopes. Mod Pathol 2013;26:S97-S110.
61.
Iqbal J, Liu Z, Deffenbacher K, et al: Gene expression profiling in lymphoma diagnosis and management. Best Pract Res Clin Haematol 2009;22:191-210.
62.
Shi L, Reid LH, Jones WD, et al: The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 2006;24:1151-1161.
63.
Annaratone L, Marchiò C, Renzulli T, Castellano I, Cantarella D, Isella C, Macrì L, Mariscotti G, Balmativola D, Cantanna E, Deambrogio C, Pietribiasi F, Arisio R, Schmitt F, Medico E, Sapino A: High-throughput molecular analysis from leftover of fine needle aspiration cytology of mammographically detected breast cancer. Transl Oncol 2012;5:180-189.
64.
Roepman P, Schuurman A, Delahaye LJ, Witteveen AT, Floore AN, Glas AM: A gene expression profile for detection of sufficient tumour cells in breast tumour tissue: microarray diagnosis eligibility. BMC Med Genomics 2009;2:52.
65.
Morrison C, Palatini J, Riggenbach J, Radmacher M, Porcu P: Fine-needle aspiration biopsy of non-Hodgkin lymphoma for use in expression microarray analysis. Cancer 2006;108:311-318.
66.
Read JA, Koff JL, Nastoupil LJ, Williams JN, Cohen JB, Flowers CR: Evaluating cell-of-origin subtype methods for predicting diffuse large B-cell lymphoma survival: a meta-analysis of gene expression profiling and immunohistochemistry algorithms. Clin Lymphoma Myeloma Leuk 2014;14:460-467.
67.
Lenz G, Wright G, Dave SS, et al: Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 2008;359:2313-2323.
68.
Rosenwald A, Wright G, Wiestner A, et al: The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell 2003;3:185-197.
69.
Karube K, Nakagawa M, Tsuzuki S, et al: Identification of FOXO3 and PRDM1 as tumor-suppressor gene candidates in NK-cell neoplasms by genomic and functional analyses. Blood 2011;118:3195-3204.
70.
Compagno M, Lim WK, Grunn A, et al: Mutations of multiple genes cause deregulation of NF-κB in diffuse large B-cell lymphoma. Nature 2009;459:717-721.
71.
Visco C, Li Y, Xu-Monette ZY, et al: Comprehensive gene expression profiling and immunohistochemical studies support application of immunophenotypic algorithm for molecular subtype classification in diffuse large B-cell lymphoma: a report from the International DLBCL Rituximab-CHOP Consortium Program Study. Leukemia 2012;26:2103-2113, erratum in Leukemia 2014;28:980.
72.
Hans CP, Weisenburger DD, Greiner TC, et al: Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 2004;103:275-272.
73.
Bodor C, Grossmann V, Popov N, Okosun J, O'Riain C, Tan K, Marzec J, Araf S, Wang J, Lee AM, Clear A, Montoto S, Matthews J, Iqbal S, Rajnai H, Rosenwald A, Ott G, Campo E, Rimsza LM, Smeland EB, Chan WC, Braziel RM, Staudt LM, Wright G, Lister TA, Elemento O, Hills R, Gribben JG, Chelala C, Matolcsy A, Kohlmann A, Haferlach T, Gascoyne RD, Fitzgibbon J: EZH2 mutations are frequent and represent an early event in follicular lymphoma. Bood 2013;122:3165-3168.
74.
Iqbal J, Shen Y, Huang X, Liu Y, Wake L, Liu C, Deffenbacher K, Lachel CM, Wang C, Rohr J, Guo S, Smith LM, Wright G, Bhagavathi S, Dybkaer K, Fu K, Greiner TC, Vose JM, Jaffe E, Rimsza L, Rosenwald A, Ott G, Delabie J, Campo E, Braziel RM, Cook JR, Tubbs RR, Armitage JO, Weisenburger DD, Staudt LM, Gascoyne RD, McKeithan TW, Chan WC: Global microRNA expression profiling uncovers molecular markers for classification and prognosis in aggressive B-cell lymphoma. Blood 2015;125:1137-1145.
75.
Rimsza LM, Wright G, Schwartz M, et al: Accurate classification of diffuse large B-cell lymphoma into germinal center and activated B-cell subtypes using a nuclease protection assay on formalin-fixed, paraffin-embedded tissues. Clin Cancer Res 2011;17:3727-3732.
76.
Ferreira BI, Garcia JF, Suela J, et al: Comparative genome profiling across subtypes of low-grade B-cell lymphoma identifies type-specific and common aberrations that target genes with a role in B-cell neoplasia. Haematologica 2008;93:670-679.
77.
Royo C, Salaverria I, Hartmann EM, et al: The complex landscape of genetic alterations in mantle cell lymphoma. Semin Cancer Biol 2011;21:322-334.
78.
Rinaldi A, Mian M, Chigrinova E, et al: Genome-wide DNA profiling of marginal zone lymphomas identifies subtype-specific lesions with an impact on the clinical outcome. Blood 2011;117:1595-1604.
79.
Lenz G, Wright GW, Emre NC, et al: Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc Natl Acad Sci USA 2008;105:13520-13525.
80.
Vieira J, Henrique R, Ribeiro FR, Barros-Silva JD, Peixoto A, Santos C, Pinheiro M, Costa VL, Soares MJ, Oliveira J, Jerónimo C, Teixeira MR: Feasibility of differential diagnosis of kidney tumors by comparative genomic hybridization of fine needle aspiration biopsies. Genes Chromosomes Cancer 2010;49:935-947.
81.
Andre F, Job B, Dessen P, Tordai A, Michiels S, Liedtke C, Richon C, Yan K, Wang B, Vassal G, Delaloge S, Hortobagyi GN, Symmans WF, Lazar V, Pusztai L: Molecular characterization of breast cancer with high-resolution oligonucleotide comparative genomic hybridization array. Clin Cancer Res 2009;15:441-451.
82.
Kitoh H, Ryozawa S, Harada T, Kondoh S, Furuya T, Kawauchi S, Oga A, Okita K, Sasaki K: Comparative genomic hybridization analysis for pancreatic cancer specimens obtained by endoscopic ultrasonography-guided fine-needle aspiration. J Gastroenterol 2005;40:511-517.
83.
Hartmann EM, Campo E, Wright G, et al: Pathway discovery in mantle cell lymphoma by integrated analysis of high-resolution gene expression and copy number profiling. Blood 2010;116:953-961.
84.
Bignell GR, Greenman CD, Davies H, et al: Signatures of mutation and selection in the cancer genome. Nature 2010;463:893-898.
85.
Fowler KE, Reitter CP, Walling GA, Griffin DK: Novel approach for deriving genome wide SNP analysis data from archived blood spots. BMC Res Notes 2012;5:503.
86.
Young TA, Burgess BL, Rao NP, Gorin MB, Straatsma BR: High-density genome array is superior to fluorescence in-situ hybridization analysis of monosomy 3 in choroidal melanoma fine needle aspiration biopsy. Mol Vis 2007;13:2328-2333.
87.
Puente XS, Pinyol M, Quesada V, et al: Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011;475:101-105.
88.
Fabbri G, Rasi S, Rossi D, et al: Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med 2011;208:1389-1401.
89.
Morin RD, Mendez-Lago M, Mungall AJ, et al: Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 2011;476:298-303.
90.
Chapman MA, Lawrence MS, Keats JJ, et al: Initial genome sequencing and analysis of multiple myeloma. Nature 2011;471:467-472.
91.
Koskela HL, Eldfors S, Ellonen P, et al: Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med 2012;366:1905-1913.
92.
Gleeson FC, Kipp BR, Voss JS, Campion MB, Minot DM, Tu ZJ, Klee EW, Sciallis AP, Graham RP, Lazaridis KN, Henry MR, Levy MJ: Endoscopic ultrasound fine-needle aspiration cytology mutation profiling using targeted next-generation sequencing: personalized care for rectal cancer. Am J Clin Pathol 2015;143:879-888.
93.
Gleeson FC, Kipp BR, Kerr SE, Voss JS, Lazaridis KN, Katzka DA, Levy MJ: Characterization of endoscopic ultrasound fine-needle aspiration cytology by targeted next-generation sequencing and theranostic potential. Clin Gastroenterol Hepatol 2015;13:37-41.
94.
Le Mercier M, D'Haene N, De Nève N, Blanchard O, Degand C, Rorive S, Salmon I: Next-generation sequencing improves the diagnosis of thyroid FNA specimens with indeterminate cytology. Histopathology 2015;66:215-224.
95.
Kubota Y, Kawakami H, Natsuizaka M, Kawakubo K, Marukawa K, Kudo T, Abe Y, Kubo K, Kuwatani M, Hatanaka Y, Mitsuhashi T, Matsuno Y, Sakamoto N: CTNNB1 mutational analysis of solid-pseudopapillary neoplasms of the pancreas using endoscopic ultrasound-guided fine-needle aspiration and next-generation deep sequencing. J Gastroenterol 2015;50:203-210.
96.
de Biase D, Visani M, Baccarini P, Polifemo AM, Maimone A, Fornelli A, Giuliani A, Zanini N, Fabbri C, Pession A, Tallini G: Next generation sequencing improves the accuracy of KRAS mutation analysis in endoscopic ultrasound fine needle aspiration pancreatic lesions. PLoS One 2014;9:e87651.
97.
Kanagal-Shamanna R, Portier BP, Singh RR, Routbort MJ, Aldape KD, Handal BA, Rahimi H, Reddy NG, Barkoh BA, Mishra BM, Paladugu AV, Manekia JH, Kalhor N, Chowdhuri SR, Staerkel GA, Medeiros LJ, Luthra R, Patel KP: Next-generation sequencing-based multi-gene mutation profiling of solid tumors using fine needle aspiration samples: promises and challenges for routine clinical diagnostics. Mod Pathol 2014;27:314-327.
98.
Young G, Wang K, He J, Otto G, Hawryluk M, Zwirco Z, Brennan T, Nahas M, Donahue A, Yelensky R, Lipson D, Sheehan CE, Boguniewicz AB, Stephens PJ, Miller VA, Ross JS: Clinical next-generation sequencing successfully applied to fine-needle aspirations of pulmonary and pancreatic neoplasms. Cancer Cytopathol 2013;121:688-694.
99.
Hadd AG, Houghton J, Choudhary A, Sah S, Chen L, Marko AC, Sanford T, Buddavarapu K, Krosting J, Garmire L, Wylie D, Shinde R, Beaudenon S, Alexander EK, Mambo E, Adai AT, Latham GJ: Targeted, high-depth, next-generation sequencing of cancer genes in formalin-fixed, paraffin-embedded and fine-needle aspiration tumor specimens. J Mol Diagn 2013;15:234-247.
100.
Lee HB, Joung JG, Kim J, Lee KM, Ryu HS, Lee HO, Moon HG, Park WY, Noh DY, Han W: The use of FNA samples for whole-exome sequencing and detection of somatic mutations in breast cancer surgical specimens. Cancer Cytopathol 2015;123:669-677.
101.
Rajer M, Kmet M: Quantitative analysis of fine needle aspiration biopsy samples. Radiol Oncol 2005;39:269-272.
102.
Kanagal-Shamanna R, Portier BP, Singh RR, Routbort MJ, Aldape KD, Handal BA, Rahimi H, Reddy NG, Barkoh BA, Mishra BM, Paladugu AV, Manekia JH, Kalhor N, Chowdhuri SR, Staerkel GA, Medeiros LJ, Luthra R, Patel KP: Next-generation sequencing-based multi-gene mutation profiling of solid tumors using fine needle aspiration samples: promises and challenges for routine clinical diagnostics. Mod Pathol 2014;27:314-327.
103.
Dyhdalo K, Macnamara S, Brainard J, Underwood D, Tubbs R, Yang B: Assessment of cellularity, genomic DNA yields, and technical platforms for BRAF mutational testing in thyroid fine-needle aspirate samples. Cancer Cytopathol 2014;122:114-122.
104.
Peluso AL, Cascone AM, Lucchese L, Cozzolino I, Ieni A, Mignogna C, Pepe S, Zeppa P: Use of FTA cards for the storage of breast carcinoma nucleic acid on fine-needle aspiration samples. Cancer Cytopathol 2015;123:582-592.
105.
Park KS, Oh YL, Ki CS, Kim JW: Evaluation of the Real-Q BRAF V600E detection assay in fine-needle aspiration samples of thyroid nodules. J Mol Diagn 2015;17:431-437.
106.
da Cunha Santos G, Saieg MA, Ko HM, Geddie WR, Boerner SL, Craddock KJ, Crump M, Bailey D: Multiplex sequencing for EZH2, CD79B, and MYD88 mutations using archival cytospin preparations from B-cell non-Hodgkin lymphoma aspirates previously tested for MYC rearrangement and IGH/BCL2 translocation. Cancer Cytopathol 2015;123:413-420.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.