Purpose: Diagnosis of cervical intraepithelial neoplasia (CIN) is currently based on the histological result of an aiming biopsy. This preliminary study investigated whether diagnostics for CIN can potentially be improved using semiautomatic colposcopic image analysis. Methods: 198 women with unremarkable or abnormal smears underwent colposcopy examinations. 375 regions of interest (ROIs) were manually marked on digital screen shots of the streaming documentation, which we provided during our colposcopic examinations (39 normal findings, 41 CIN I, and 118 CIN II–III). These ROIs were classified into two groups (211 regions with normal findings and CIN I, and 164 regions with CIN II–III). We developed a prototypical computer-assisted diagnostic (CAD) device based on image-processing methods to automatically characterize the color, texture, and granulation of the ROIs. Results: Using n- fold cross-validation, the CAD system achieved a maximum diagnostic accuracy of 80% (sensitivity 85% and specificity 75%) corresponding to a correct assignment of abnormal or unremarkable findings. Conclusions: The CAD system may be able to play a supportive role in the further diagnosis of CIN, potentially paving the way for new and enhanced developments in colposcopy-based diagnosis.

1.
Becker N: Epidemiological aspects of cancer screening in Germany. J Cancer Res Clin Oncol 2003;129:691–702.
2.
Deutsche Gesellschaft für Gynäkologie und Geburtshilfe: S2k-Leitlinie zur Prävention, Diagnostik und Therapie der HPV-Infektion und präinvasiven Läsionen des weiblichen Genitale – Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF), No. 015/027. 2008. http://leitlinien.net/.
3.
Arbeitsgemeinschaft für Gynäkologische Onkologie: Interdisziplinäre S2k-Leitlinie Diagnostik und Therapie des Zervixkarzinoms. Munich, Zuckschwerdt,2008. http://www.krebsgesellschaft.de/download/ll_zervix.pdf.
4.
Solomon D, Davey D, Kurman R, et al: The 2001 Bethesda System: terminology for reporting results of cervical cytology. JAMA 2002;287:2114–2119.
5.
Nocon M, Mitteldorf T, Roll S, Greiner W, Willich SN, Graf von der Schulenburg JM: Welchen medizinischen und gesundheitsökonomischen Nutzen hat die Kolposkopie als primäres Screening auf das Zervixkarzinom? Cologne, Deutsches Institut für Medizinische Dokumentation und Information, 2007.
6.
Jeronimo J, Schiffman M: Colposcopy at a crossroads. Am J Obstet Gynecol 2006;195:349–353.
7.
Hammes LS, Naud P, Passos EP, Matos J, Brouwers K, Rivoire W, Syrjänen KJ: Value of the International Federation for Cervical Pathology and Colposcopy (IFCPC) terminology in predicting cervical disease. J Low Genit Tract Dis 2007;11:158–165.
8.
Massad LS, Collins YC: Strength of correlations between colposcopic impression and biopsy histology. Gynecol Oncol 2003;89:424–428.
9.
Pretorius RG, Bao YP, Belinson JL, Burchette RJ, Smith JS, Qiao YL: Inappropriate gold standard bias in cervical cancer screening studies. Int J Cancer 2007;121:2218–2224.
10.
Haider Z, Idris M, Memon WA, Kashif N, Idris S, Sajjad Z, Akram S: Can (CAD) be used as a screening tool in the detection of pulmonary nodules when using 64-slice multidetector computed tomography? Int J Gen Med 2011;4:815–819.
11.
Elter M, Schulz-Wendtland R, Wittenberg T: The prediction of breast cancer biopsy outcomes using two CAD approaches that both emphasize an intelligible decision process. Med Phys 2007;34:4164–4172.
12.
Romero C, Varela C, Muñoz E, Almenar A, Pinto JM, Botella M: Impact on breast cancer diagnosis in a multidisciplinary unit after the incorporation of mammography digitalization and computer-aided detection systems. AJR Am J Roentgenol 2011;197:1492–1497 (erratum published in AJR Am J Roentgenol 2012;198:2).
13.
Moin P, Deshpande R, Sayre J, Messer E, Gupte S, Romsdahl H, Hasegawa A, Liu BJ: An observer study for a computer-aided reading protocol (CARP) in the screening environment for digital mammography. Acad Radiol 2011;18:1420–1429.
14.
Münzenmayer C, Kage A, Wittenberg T, Mühldorfer S: Computer-assisted diagnosis for precancerous lesion in the esophagus. Methods Inf Med 2009;48:324–330.
15.
Zopf S, Kage A, Münzenmayer C, Wittenberg T, Hahn EG, Raithel M: Narrow-band imaging for computer-assisted diagnosis in patients with Barrett’s esophagus (abstract). Gastrointest Endosc 2009;69:AB376.
16.
Rajan P, Canto M, Gorospe E, Almario A, Kage A, Winter C, Hager, Wittenberg T, Münzenmayer C: Automated diagnosis of Barrett’s esophagus with endoscopic images; in Dössel O, Schlegel WC (eds): World Congress on Medical Physics and Biomedical Engineering: 7–12 September, 2009, Munich, Germany. International Federation for Medical and Biological Engineering: proceedings, vol 25, part 4: Image processing, biosignal processing, modelling and simulation, biomechanics. Berlin, Springer, 2009, pp 2189–2192.
17.
Kothe C, Münzenmayer C, Wittenberg T, Hess M: Experiences with ‘optical’ biopsies of leukoplakia of the vocal folds (in German). Laryngorhinootologie 2005;84:92–95.
18.
Kage A, Münzenmayer C, Wittenberg T: A knowledge-based system for the computer assisted diagnosis of endoscopic images; in Tolxdorff T, Braun J, Deserno TM, Handels H, Horsch A, Meinzer HP (eds): Bildverarbeitung für die Medizin 2008. Algorithmen – Systeme – Anwendungen. Proceedings des Workshops vom 6. bis 8. April 2008 in Berlin. Springer, Berlin, 2008, pp 272–276.
19.
Wittenberg T, Kage A, Benz B, Winter C, Koch M, Beckmann M, Münzenmayer C, Mehlhorn G: GynCAD – a computer-assisted diagnosis approach for colposcopy; in Horsch A, et al (eds): Abstracts – Demonstration Workshop on Computer-Aided Detection and Diagnosis, CARS-Workshop, June 23/26, 2010, Geneva, 2010, pp 7–8.
20.
Münzenmayer C, Mühldorfer S, Mayinger B, Volk H, Grobe M, Wittenberg T: Farbtexturbasierte optische Biopsie auf hochauflösenden endoskopischen Farbbildern des Ösophagus; in Wittenberg T, et al (eds): Bildverarbeitung für die Medizin 2003. Algorithmen – Systeme – Anwendungen. Proceedings des Workshops vom 9.–11. März 2003 in Erlangen. Springer, Berlin, 2003, pp 191–195.
21.
Palm C, Metzler V, Mohan B, Dieker O, Lehmann T, Spitzer K: Co-Occurrence Matrizen zur Texturklassifikation in Vektorbildern; in Evers H, et al (eds) Bildverarbeitung für die Medizin 1999. Algorithmen – Systeme – Anwendungen. Proceedings des Workshops am 4. und 5. März 1999 in Heidelberg. Springer, Berlin, 1999, pp 367–371.
22.
Münzenmayer C, Volk H, Paulus D, Vogt F, Wittenberg T: Multispectral statistical geometrical features for texture analysis and classification; in Franke KH (ed): Proceedings 8. Farbbildverarbeitung, Zentrum für Bild- und Signalverarbeitung e.V. Ilmenau, Workshop, 10./11.10.2002, TU Ilmenau, 2002, pp 87–94.
23.
Michie D, Spiegelhalter DJ, Taylor CC: Machine Learning, Neural and Statistical Classification. New York, Ellis Horwood, 1994.
24.
Bornstein J, Bentley J, Bosze P, Girardi F, Haefner H, Menton M, Perrotta M, Prendiville W, Russell P, Sideri M, Strander B, Torne A, Walker P: IFCPC colposcopic nomenclature. In preparation.
25.
Soutter WP, Diakomanolis E, Lyons D, Ghaem-Maghami S, Ajala T, Haidopoulos D, Doumplis D, Kalpaktsoglou C, Sakellaropoulos G, Soliman S, Perryman K, Hird V, Buckley CH, Pavlakis K, Markaki S, Dina R, Healy V, Balas C: Dynamic spectral imaging: improving colposcopy. Clin Cancer Res 2009;15:1814–1820.
26.
Ferris DG, Litaker MS, Miller JA, Macfee MS, Crawley D, Watson D: Qualitative assessment of telemedicine network and computer-based telecolposcopy. J Low Genit Tract Dis 2002;6:145–149.
27.
Schädel D, Coumbos A, Willrodt RG, Roggan A, Jochum T, Müller G, Albrecht H, Kühn W: Digitale Kolposkopie bei Läsionen der Cervix uteri – eine Pilotstudie unter Berücksichtigung telematischer Fragestellungen. Geburtshilfe Frauenheilkd 2004;64:1205–1212.
28.
Schädel D, Coumbos A, Drechsler I, Ey S, Weissbach C, Albrecht H, Lochmann C, Kuehn W: New research on colposcopy: results of a two-phase study to test digital colposcopy and telecolposcopy in clinical practice. J Turk Ger Gynecol Assoc 2006;7:282–291.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.