Neural regeneration is a multistep event which appears to be controlled by neurotrophic factors such as neurotrophins and/or neurotrophic cytokines. Following traumatic, age- and/or disease-related responses, these molecules may be expressed and/or released by innervated target cells, neuron-ensheathing glial cells, recruited macrophages or by the neural somata themselves which altogether provide possible cues for neurotrophic strategies in vivo. In this respect, neurotrophic molecules may follow either paracrine, autocrine or even intracrine pathways in order to attenuate or even prevent neuronal degeneration. As neurotrophic molecules may have important functions as putative therapeutic agents for patients suffering from CNS disorders or from peripheral neuropathies, adequate and reliable animal lesion paradigms are of importance as in vivo assay systems. Axotomy models or selective neurotoxin-lesion models of anatomically well-defined neuron target connections are a first step towards assaying of neurotrophic actions in vivo. In lesioned central neural pathways, the existence of multineuronal networks, diffuse nuclear topography and a high degree of collateralization should be considered when studying regenerative potentials of trophic factors. Because of their simple organization and accessibility, peripheral neural pathways are particularly appealing as assay systems. As neurotrophic requirements and vulnerability vary among neural subsystems, in vivo lesion paradigms reveal pharmacological rather than physiological effects which have to be elucidated by more sophisticated experimental paradigms and molecular tools.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.